An Introduction to Machine Learning and Natural Language Processing Tools

Presented by: Mark Sammons, Vivek Srikumar
(Many slides courtesy of Nick Rizzolo)
Some reasonably reliable facts…*

- 1.7 ZB (= 10^{21} bytes) of new digital information added worldwide in 2010
- 95% of this is unstructured (e.g. not database entries)
- 25% is images
- 6EB is email (1,000 EB = 1 ZB)

How to manage/access the tiny relevant fraction of this data?

*Source: Dr. Joseph Kielman, DHS: projected figures taken from presentation in Summer 2010
Keyword search is NOT the answer to every problem…

- **Abstract/Aggregative queries:**
 - E.g. find news reports about visits by heads of state to other countries
 - E.g. find reviews for movies that some person might like, given a couple of examples

- **Enterprise Search:**
 - Private collections of documents, e.g. all the documents published by a corporation
 - Much lower redundancy than web documents
 - Need to search for *concepts*, not *words*
 - E.g. looking for proposals with similar research goals: *wording may be very different* (different scientific disciplines, different emphasis, different methodology)
Even when keyword search is a good start…

- Waaaay too many documents that match the key words
- Solution: **Filter** data that is irrelevant (for task in hand)

Some examples…
- Different languages
- Spam vs. non-spam
- Forum/blog post topic

How to solve the Spam/non-Spam problem? Suggestions?
Machine Learning could help...

- Instead of writing/coding rules ("expert systems"), use statistical methods to "learn" rules that perform a classification task, e.g.
 - given a blog post, which of N different topics is it most relevant to?
 - Given an email, is it spam or not?
 - Given a document, which of K different languages is it in?

- ... and now, a demonstration...

- The demonstration shows what a well-designed classifier can achieve. Here’s a very high-level view of how classifiers work in the context of NLP.
Motivating example: blog topics
What we need:

\[f(\) = \text{"politics"} \]

\[f(\) = \text{"sports"} \]

\[f(\) = \text{"business"} \]
Where to get it: Machine Learning

Data
→ "politics"
→ "sports"
→ "business"

Feature Functions

Learning Algorithm

f
So, what are “feature functions”?

- Take same input as f
- Indicate some property of the input a.k.a., a feature

Typical NLP feature functions
- **Binary**
 - Appearance of a given word
 - Appearance of two words consecutively a.k.a., a bigram
 - Appearance of a word with a given part of speech
 - Appearance of a named entity (e.g. “Barack Obama”)
- **Real**
 - Counts of binary features
 - TFIDF (a statistical measure of a document)
What does the Learning Algorithm do?

- **Training input:** a feature-based representation of examples, together with the labels we want to be able to predict.
 - E.g. 1,000 email feature sets labeled either "spam" or "non-spam"
 - Each feature set is extracted from an email using the feature functions
 - Labels are typically assigned by human annotator

- Computes statistics over features, relating features to labels

- Generates a **classifier** (statistical model) that predicts a label based on the features that are active.
 - E.g. if feature "word-'VIAGRA'-is-present" is active, predict "SPAM"

- **Training output:** the classifier. Now it will take feature representations of new emails (no label!) and predict a label.
 - Sometimes, it will be wrong!
Update Rules

- Decision rule: Linear Threshold Function

\[
\sum_{i \in A_t} w_{t,i} s_i \geq \theta_t
\]

- Winnow – mistake driven update rules:
 - Promotion: if \(\sum_{i \in A_t} w_{t,i} s_i < \theta_t \), \(\forall i \in A_t, w_{t,i} \leftarrow w_{t,i} \cdot \alpha_t^{s_i} \)
 - Demotion: if \(\sum_{i \in A_t} w_{t,i} s_i \geq \theta_t \), \(\forall i \in A_t, w_{t,i} \leftarrow w_{t,i} \cdot \beta_t^{s_i} \)
One Basic System:
One vs. All Linear Threshold Function

- Targets (concepts)
- Weighted edges, instead of weight vectors
- Features
 - Prediction is “one vs. all”
A Training Example – 3 Newsgroups

Update rule: Winnow

\[\alpha = 2, \ \beta = \frac{1}{2}, \ \theta = 3.5 \]
A Training Example, abstracted…

Update rule: Winnow

\[\alpha = 2, \ \beta = \frac{1}{2}, \ \theta = 3.5 \]
Adapting to New Task: Spam Filtering

- What if we want to learn Spam vs. Non-Spam?
- Demonstration showed that the same black box can be adapted to multiple problems... so what happens internally?
- Feature functions are generic pattern extractors...
 - for a new set of documents, new features will be extracted
 - E.g. for Spam, we'd expect to see some features like "word-'VIAGRA'-is-present"
- New documents come with their own set of labels (again, assigned by human annotators)
- So we reuse the same code, but generate a new classifier...
A Training Example – Spam Filtering

Spam, V1AGRA, medicine:

Spam, buy, huge:

Non-Spam, buy, medicine:

Non-Spam, buy, time, avoid:

?, V1AGRA, time, huge:

Update rule: Winnow
\[\alpha = 2, \beta = \frac{1}{2}, \theta = 3.5 \]
Some Analysis…

- We defined a very generic feature set – ‘bag-of-words’
- We did reasonably well on three different tasks
- Can we do better on each task?
- …of course. If we add good feature functions, the learning algorithm will find more useful patterns.

Suggestions for patterns for…
- Spam filtering?
- Newsgroup classification?
- …are the features we add for Spam filtering good for Newsgroups?
- When we add specialized features, are we “cheating”?

In fact, a lot of time is usually spent engineering good features for individual tasks. It’s one way to add domain knowledge.
A Caveat

- It’s often a lot of work to learn to use a new tool set
- It can be tempting to think it would be easier to just implement what you need yourself
 - Sometimes, you’ll be right
 - But probably not this time
- Learning a tool set is an investment: payoff comes later
 - It’s easy to add new functionality – it may already be a method in some class in a library; if not, there’s infrastructure to support it
 - You will avoid certain errors: someone already made them and coded against them
 - Probably, it’s a lot more work than you think to DIY
Homework (!)

To prepare for tomorrow’s tutorial, you should:

- Log in to the DSSI server via SSH
- Check that you can transfer a file to your home directory from your laptop
- If you have any questions, ask Tim or Yuancheng:
 - Tim: weningel1@illinois.edu
 - Yuancheng: ytu@illinois.edu
- Bring your laptop to the tutorial!!!