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Let’s look at the prediction step

Can we say something about the features?
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Components of a structured model

1. ldentify inputs and the output structure
— (Sentence, POS sequence), (Document, label), etc

2. Factorize the structure

— a.k.a define the model (linear chain, grand-parent
dependencies, head-driven model, etc) “What are the parts
that | need to score?”

3. Define the scoring function

— With linear models, define the features for each factor/part
4. Write the inference algorithm

— Combinatorial optimization: Depends on how you do step 2

ructured perceptron
ield




Examples

Document First-order sequence model
classification for POS tagging

Input Document Sentence
Output One of a set of labels A sequence of labels

Features  Document features Emission: Each element of
conjoined with each sequence conjoined with
label word features

Transition: Consecutive
labels conjoined

Inference Enumerate labels Viterbi



Multiclass classification

____Output can be one
V)T of a set of labels

Indicates a scoring functlon
Typically of the form W gb( y)

N

Weight Feature
vector vector

Standard definition of feature vector:
Feature vector for input conjoined
with label y



First-order sequence
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Emission parts (atomic) Transition parts (compositional)
T T
W ¢E(X7 yz) w' o (X, Yi-1, Yi)
The usual approach: The usual approach:
For the score of a label, A score for each pair of
conjoin it with emission labels
features to define
feature vector That is, conjoin

consecutive labels 6



Distributed representations: Big picture

“...a distributed representation occurs when ... meaning is represented by a
pattern of activity across a number of processing units” [Hinton et al. 1986]

e Distributed representations for inputs: A success story
— E.g. word vectors

* QOutputs are discrete objects
— One of a set of labels (document classification)
— Label sequences (POS tagging)
— Trees with labeled edges/nodes (Parsing)
— Arbitrary graphs (Semantic Role Labeling, event extraction)

* Can we think of distributed representations for
structures?

— Starting with individual labels to compose full structures



Words are not discrete units of meaning

Dense vectors allow statistical information to be shared
across different words

— Example: Word vector representations

— Compare to sparse feature vectors
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Document

Lorem ipsum dolor sit

amet, consectetuer

adipiscing elit. In varius nulla vel

nisi. Sed interdum nisi id ligula.

Nullam sit amet metus. Mauris

facilisis ligula ac magna. Aenean

sodales. Aliquam erat volutpat,
Lorem ipsum dolor sit amet,

consectetuer adipiscing elit. In

varius nulla vel nisi. Sed interdum

nisi id ligula. Nullam sit amet

metus.

Are labels discrete units of meaning?

alt.atheism
comp.graphics

comp.oOs .ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.Xx
misc.forsale

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey
sci.crypt
sci.electronics

sci.med

sci.space
soc.religion.christian
talk.politics.guns
talk.politics.mideast
talk.religion.misc 9



POS tags are not discrete units of meaning

Table 2
The Penn Treebank POS tagset.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

SABCLE ol A

CcC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition/subordinating
conjunction

J] Adjective

JJR Adjective, comparative

|JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS  Noun, plural

NNP  Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM

Symbol (mathematical or scientific)

25.
26.
27.
28.
29

30.
31.
32.
33.
34.
35.
36.
37.
38.
39. .
40.
41.
42.
43.
44.
45.
46.
47.
48.

TO to

UH Interjection

Vb Verb, base torm
VBD  Verb, past tense

VBG  Verb, gerund/present
participle

VBN  Verb, past participle

VBP  Verb, non-3rd ps. sing. present

VBZ  Verb, 3rd ps. sing. present
WDT wh-determiner

WP wh-pronoun
WP$  Possessive wh-pronoun
WRB  wh-adverb
# Pound sign
$ Dollar sign

Sentence-final punctuation
, Comma

Colon, semi-colon

Left bracket character
Right bracket character
Straight double quote
Left open single quote
Left open double quote
Right close single quote
Right close double quote

N N

~

"
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Are structures discrete units of meaning?

POS tag sequences
— Different kinds of nouns are closer in meaning compared to verbs

— Transition JJ — NNS “similar” to the transition JJS — NNP

 Both Adjective — Noun

Some sequences closer in meaning to each other than others

Compare

— DT-JUJ-NN-VB-DT-JJ-NN

— DT—-JJ-NNS-VB-DT-JIR-NN
— DT—NN-NNS-MD-VB-JJ-NN
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Are structures discrete units of meaning?

Jack bought a glove from Mary.

Buyer Goods Seller

COMMERCE GOODS_TRANSFER

Jack acquired a glove from Mary.
Recipient Theme Source

Jack returned a glove to Mary.

ACQUIRE

Agent Theme Recipient
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Distributed Structured Output

a.k.a Embedding structured outputs

[Image courtesy Davide P. Cervone]
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Standard models assume discrete outputs

Allocates a separate part of the parameter vector for scoring
each label

Also for compositions of labels (i.e. like transitions in a
sequence model)

lgnores the fact that information can be shared across
labels that are “cluster concepts”

14



What we want

1. Represent atomic labels to allow sharing of
statistical information across them

2. Define an operator that allows us to construct
compositional structures from atomic labels

3. Use all the advances in structured prediction (eg.
inference)
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Components of a structured model

1. ldentify inputs and the output structure
— (Sentence, POS sequence), (Document, label), etc

2. Factorize the structure

— a.k.a define the model (linear chain, grand-parent
dependencies, head-driven model, etc) “What are the parts
that | need to score?”

3. Define the scoring function

—  With linear models, |deﬁne the features for each factor/part

4. Write the inference algorithm
— Combinatorial optimization: Depends on how you do step 2

5. Throw into off-the-shelf learning implementation

—  Structured perceptron/Structured SVM/Conditional Random
Field
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Atomic Labels: Multiclass classification

. n Wi
Inputs to be classified X & )1 Weight Wo
c{1,2,3,---,m} w=| . |ermm
Labels Y 5 Ly Dy 3 vector :
Wi
Kesler I
Prediction(x) = | Highest scoring label Construction. <~ \\
- Feature V(Z{or 0 \
— argmaxw (x,y) for assignil g label 1y
y to X .
Notational convenience N / : /
Extends to structured y’s The y™ block \ LY. SR
~_~

Each label y allocated a different part of the weight space

[Zimak, Har-Peled & Roth, NIPS 2002] 17



Let’s examine the features

Kesler
Construction
Feature vector

for assigning label

VIOX gk

We have XAgz [O---X---O]

y) = x <$— The y" block

0

- 4 mnxl1

Ay

?

nxm

0

_/ The yth element

c R™

Define a one-hot vector
A, for each label y

We can rewrite the feature vector in terms of the label vectors
d(x,7y) = vec(xAL) = vec(x ® A,)

iy,

Vec vectorizes its argument columnwise
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A reformulation of multi-class classification

" n
WT¢(X, y) _ WTUQC(X R Ay) Inputs to be classified x € R
Labels y € {1,2,3,---,m}

If the label vectors A, are one-hot vectors, under this
scheme, we recover standard multi-class classification
— No sharing of information across labels

— Each label accesses a different part of w

What if they weren’t one-hot?
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Make the label vectors real valued

With one-hot label vectors:
— Each label associated with separate region of weight space
— Label semantics is ignored

Label vectors do not need to be one-hot
— Share weights across labels via the redefinition of features
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What we want

1.

Represent atomic labels to allow sharing of statistical information across

them

Represent labels as dense vectors and define
feature vectors appropriately

Define an operator that allows us to construct compositional structures

from atomic labels

Use all the advances in structured prediction (eg. inference)
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Compositional Structure: First-order
sequence

Let Ayrepresent a one-hot vector for label y,
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Emission parts (atomic) Transition parts (compositional)
T T
W QR (X7 yz) W o (X, Yi-1,Yi)
For parts involving
As before l multiple labels

wlvec(pp(x)® A,) wlvec (QbT (x) ® Ay, ® Ayi)

Because each label vector is one hot, we get back the

standard linear model -



Building the feature vector

UGC(H@)D@ )—> ’Uec( ) —

-

m X 1 A mXmXn
. - 2
R Feature tensor Feature vector € pmon
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An example of the transition outer product

One-hot vector for NNS \

NN VB - TO DT

IN

CC

NN
VB
/ NNS

One-hot TO
vector -
for DT

IN

CC

ADT X ANNS
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Definition extends to more complex
structures

For atomic parts (like multiclass): single tensor product
Eg: ¢(doc, alt.atheism)=A_;. Lineisn & @(doC)

For compositional parts (like transitions): As many
additional tensor products as compositions

(X, NNS — NNS) = Aj; @ Ayys @ o(x)

@(x, [DT,NNS] — NNS) = Ay ® Agns® Agys @ 0(X)

o(x, return— A0) = A L ,rn® Axp @ O(X)
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Distributed STructured Output (DISTRO)

1. Represent atomic labels to allow sharing of statistical
information across them

Represent labels as dense vectors and define
feature vectors appropriately

2. Define an operator that allows us to construct compositional
structures from atomic labels

Represent label compositions using tensor
products to extend feature vectors for larger
parts/structures

3. Uses all the advances in structured prediction (eg. inference)
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Related ideas

* Two layer neural network for multi-class classification
— Effectively learn a representation for each label

* Nati Srebro’s thesis for multi-class classification
— Looks at this as matrix factorization

 Paul Smolensky (1990), Geoff Hinton 1986, Tony Plate thesis
(mid-90’s)
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Learning

 We still need to learn the weight vector
e Also, for each label, we learn a vector representation

* Need to specify the dimensionality of the vector

— Side note: if dimensionality = number of labels, we might as well use
one-hot vectors
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The learning setting

Input: A dataset (x,y)

— y is a structure composed of discrete labels

Need a to specify the shape of the structure as with
any CRF/Struct SVM

— Linear sequence model for POS

— Tree for a dependency parse

That is, same setting as standard structured learning
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The learning objective

Label vectors specify the feature representation of a structure
Learn by minimizing e

________________________

|

/ Nuclear norm, favors i

Weight Label vectgp . lower rank matrices |
regularization + regularization

—_——— - - - - - - — - — - — - — - — — — — — — —- — — ————

' Hinge loss here for Structured SVM,

w: Weight vector  Could be changed to get CRF |

A: Matrix composed of label vectors as columns
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Learning weights and label vectors

Objective is non convex
(For multiclass classification, bilinear in w and A)

Alternating minimization algorithm
1. Initialize w and A

2. Iterate
1. Fix A, solve for w using SGD
2. Fix w, solve for A using SGD with proximal step
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Experiments
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Dense labels help document classification

20 newsgroups classification

Setting Accuracy

Structured SVM (one-hot vectors) 81.4
DISTRO 84.0
DISTRO (15 dim vectors) 83.1
DISTRO (11 dim vectors) 80.9

e 11-19 dimensional vectors generally good
e Not sensitive to initialization because loss driven



Compositional structure: POS tagging

* English: Penn Treebank, 45 labels

Setting | Accuragy

Structured SVM (45 dim one-hot vectors) 96.2
DISTRO (5 dim vectors) 95.1
DISTRO (20 dim vectors) 96.7

* Basque: CoNLL 2007 shared task data, 64 labels

Setting | Acauraey

Structured SVM (64 dim one-hot vectors) 91.5
DISTRO 92.4

34



Summary

e Structures aren’t always discrete units of meaning
— Dense representations

« A method for using dense vector representations of labels
for arbitrary structured prediction

* An objective for learning label vectors and weights together
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