
SNoW User Guide

Andrew J. Carlson, Chad M. Cumby, Je� L. Rosen, Dan Roth

Cognitive Computation Group

Computer Science Department

University of Illinois, Urbana/Champaign

Urbana, Illinois
August, 1999

c1999 by Dan Roth
All rights reserved

2

Contents

1 Introduction 4

2 License terms 5

3 Installation 7

4 The SNoW Architecture 8

4.1 The SNoW System . 8

5 Using SNoW 11

5.1 Execution Modes . 11
5.2 Command line usage . 11

5.2.1 Mode Selection . 11
5.2.2 Architecture De�nition . 12
5.2.3 Algorithm Parameter De�nition . 13
5.2.4 Input/Output Options . 14

6 File Formats 17

6.1 Example Files . 17
6.2 Error Files . 18
6.3 Network Files . 18

7 Tutorial 20

7.1 Training . 20
7.2 Testing . 21
7.3 Other Options . 22

3

Chapter 1

Introduction

SNoW is a learning architecture that is speci�cally tailored for learning in the presence of a very
large number of features. and can be used as a general purpose multi-class classi�er.

The current release of the SNoW architecture is the second generation of the original SNoW
learning architecture developed by Dan Roth. SNoW stands for Sparse Network of Winnows. The
learning architecture is a sparse network of sparse linear functions over a pre-de�ned or incremen-
tally acquired feature space; several update rules may be used - sparse variations of the Winnow
update rule, the Perceptron, or naive Bayes.

SNoW is a multi class learner, where each class is represented as a single target node, learned
as a linear function over the feature space or as a combination of several of those, organized into
clouds. Each of these representations is learned from labeled data in an incremental fashion. Both
the representation architecture (i.e., which \features" are important) and the features' weight are
determined by SNoW. Decision made by SNoW are either binary { indicating which of the labels is
predicted for a given example, or continuous (in [0; 1]) { indicating a con�dence in the prediction.
Several other output modes are available.

SNoW has been used successfully in several applications in the natural language and visual
processing domains; the release is meant to be used only for research purposes, with the hope that
it can be a useful research tool for studying learning in these domains. Feedback of any sort is
welcome.

Dan Roth
Urbana, IL. Aug. 1999.

The document is organized as follows. Chapter 2 contains the software license, under the
University of Illinois terms. Users need to agree to it in order to used the software and register
on-line. Chapter 3 describes how to install the SNoW system. Chapter 4 gives a brief overview
of the learning architecture and the technical approach. A detailed description of how to use the
system follows in Chapter 5, where all the command line arguments and modes of operation are
described. Next, in Chapter 6, the formats of the various �les used by the system is described.
Finally, Chapter 7 is a tutorial showing how to use the system with various options.

A new user is encouraged to read all of this document, but the best starting place for learning
to use the system is the tutorial. The tutorial gives a good sense of the required steps for using the
system. Once a user is comfortable with the default method of using the system, the more detailed
description of the command line options given in Chapter 5 may be more useful.

4

Chapter 2

License terms

UNIVERSITY OF ILLINOIS

"SNoW" SOFTWARE LICENSE AGREEMENT

(RTMO Technology #)
(Research and Academic Use License)

Cognitive Computation Group
University of Illinois at Urbana-Champaign

Downloading and using the SNoW software implies that you accept the following license:
Under this Agreement, The Board of Trustees of the University of Illinois ("University"), a body

corporate and politic of the State of Illinois with its principal oÆces at 506 South Wright Street,
Urbana, Illinois 61801, U.S.A., on behalf of its Department of Computer Science on the Urbana-
Champaign Campus, provides the software ("Software") described in Appendix A, attached hereto
and incorporated herein, to the Licensee identi�ed below ("Licensee") subject to the following
conditions:

� 1. Upon execution of this Agreement by Licensee, the University grants, and Licensee accepts,
a royalty-free, non-exclusive license:

{ A. To use unlimited copies of the Software for its own academic and research purposes.

{ B. To make derivative works. However, if Licensee distributes any derivative work based
on or derived from the Software (with such distribution limited to binary form only),
then Licensee will (1) notify the University (c/o Assistant Professor Dan Roth, e-mail:
danr@cs.uiuc.edu) regarding its distribution of the derivative work and provide a copy
if requested, and (2) clearly notify users that such derivative work is a modi�ed version
and not the original Software distributed by the University.

{ C. To redistribute (sublicense) derivative works based on the Software in binary form only
to third parties provided that (1) the copyright notice and any accompanying legends
or proprietary notices are reproduced on all copies, (2) no royalty is charged for such
copies, and (3) third parties are restricted to using the derivative work for academic and
research purposes only, without further sublicensing rights.

� No license is granted herein that would permit Licensee to incorporate the Software into
a commercial product, or to otherwise commercially exploit the Software. Should Licensee

5

wish to make commercial use of the Software, Licensee should contact the University, c/o the
Research and Technology Management OÆce ("RTMO") to negotiate an appropriate license
for such commercial use. To contact the RTMO: rtmo@uiuc.edu; telephone: (217)333-7862;
fax: (217)244-3716.

� THE UNIVERSITY GIVES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED,
FOR THE SOFTWARE AND/OR ASSOCIATED MATERIALS PROVIDED UNDER THIS
AGREEMENT, INCLUDING,WITHOUT LIMITATION,WARRANTYOFMERCHANTABIL-
ITY ANDWARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, AND ANYWAR-
RANTY AGAINST INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS.

� Licensee understands the Software is a research tool for which no warranties as to capabilities
or accuracy are made, and Licensee accepts the Software on an "as is, with all defects" basis,
without maintenance, debugging , support or improvement. Licensee assumes the entire risk
as to the results and performance of the Software and/or associated materials. Licensee agrees
that University shall not be held liable for any direct, indirect, consequential, or incidental
damages with respect to any claim by Licensee or any third party on account of or arising
from this Agreement or use of the Software and/or associated materials.

� Licensee understands the Software is proprietary to the University. Licensee will take all
reasonable steps to insure that the source code is protected and secured from unauthorized
disclosure, use, or release and will treat it with at least the same level of care as Licensee
would use to protect and secure its own proprietary computer programs and/or information,
but using no less than reasonable care.

� In the event that Licensee shall be in default in the performance of any material obligations
under this Agreement, and if the default has not been remedied within sixty (60) days after the
date of notice in writing of such default, University may terminate this Agreement by written
notice. In the event of termination, Licensee shall promptly return to University the original
and any copies of licensed Software in Licensee's possession. In the event of any termination
of this Agreement, any and all sublicenses granted by Licensee to third parties pursuant to
this Agreement (as permitted by this Agreement) prior to the date of such termination shall
nevertheless remain in full force and e�ect.

� The Software was developed, in part, with support from the National Science Foundation,
and the Federal Government has certain license rights in the Software.

� This Agreement shall be construed and interpreted in accordance with the laws of the State
of Illinois, U.S.A..

� This Agreement shall be subject to all United States Government laws and regulations now
and hereafter applicable to the subject matter of this Agreement, including speci�cally the
Export Law provisions of the Departments of Commerce and State. Licensee will not export
or re-export the Software without the appropriate United States or foreign government license.

� The license is only valid when you register as a user. If you have obtained a copy without
registration, you must immediately register by sending an e-mail to danr@cs.uiuc.edu.

By its registration and use of the Software, Licensee con�rms that it understands the terms and
conditions of this Agreement, and agrees to be bound by them.

6

Chapter 3

Installation

The SNoW system is available for download as gzipped tar archive from:

http://L2R.cs.uiuc.edu/~cogcomp/

Before downloading the archive, you must register as a user and accept the license agreement.
You can then download the �le snow.tar.gz, which contains complete source code (C++) for the
SNoW program, the tutorial data �les, and the documentation and license. The program can be
compiled easily on most UNIX systems as well as on Windows machines as a console application.
To install the system, unzip the downloaded �le:

> gunzip snow.tar.gz

and unpack the tar archive:

> tar -xvf snow.tar

This will make a directory Snow under your current directory. Change directory to this:

> cd Snow

and compile the binary by typing make. If compilation is successful, you should now have an
executable named snow.

7

Chapter 4

The SNoW Architecture

The SNoW learning architecture is a sparse network of linear functions over a pre-de�ned or in-
crementally learned feature space and is speci�cally tailored for learning in domains in which the
potential number of features taking part in decisions is very large, but may be unknown a priori.
Some of the characteristics of this learning architecture are its sparsely connected units, the alloca-
tion of features and links in a data driven way, its computational dependence on the number of active
features rather than the total number of features and the utilization of a feature eÆcient update
rule. SNoW has been used successfully on a variety of large scale learning tasks in the natural lan-
guage domain [Roth, 1998, Golding and Roth, 1999, Roth and Zelenko, 1998, Munoz et al., 1999]
and, more recently, in the visual processing domain.

In this release SNoW is to be thought of as a general purpose multi-class classi�er. The class
labels are called below the target nodes and they are learned as sparse linear functions over the
input features. By sparse we mean here that each target may be learned as a function of a (small)
subset of all the features known to the system, in a data driven way that is partially controlled by
parameters set by the user.

The user de�nes the architecture of the learner. This means, as a minimum, de�ning the number
of class representations to be learned, but may include also de�ning many more parameters of the
architecture, including the update rules used, the number of learned units representing a target
and more. Although any number of targets units can be de�ned, due to the decision mechanisms
used, it is recommended that the number of targets used is the number of di�erent classes (i.e., two
in the case of a two-class problem).

When viewing SNoW simply as a classi�cation system, the typical input would be a collection
of labeled exampled, in a format speci�ed in Chapter 6. The following section provides a slightly
more abstract view that may be useful for people in the stage of modeling their problem as a
learning problem.

4.1 The SNoW System

The SNoW (Sparse Network of Winnows1)) learning architecture is a sparse network of linear units
over a common pre-de�ned or incrementally learned feature space. Nodes in the input layer of
the network represent simple relations over the input and are being used as the input features.
Each linear unit is called a target node and represents relations which are of interest over the input

1To winnow: to separate cha� from grain.

8

examples, namely the class labels. Given a set of relations (i.e., types of features) that may be
of interest in the input example, each input example is mapped into a set of features which are
active (present) in it; this representation is presented to the input layer of SNoW and propagates to
the target nodes. (Features may take either binary value, just indicating the fact that the feature
is active (present) or real values, reecting its strength. Target nodes are linked via weighted
edges to (some of the) input features. Let At = fi1; : : : ; img be the set of features that are active
in an example and are linked to the target node t. Then the linear unit is active if and only if
P

i2At
wt

i
> �t, where w

t

i
is the weight on the edge connecting the ith feature to the target node t,

and �t is its threshold.
The learning policy is on-line and mistake-driven (except when naive Bayes is used); several

update rules can be used within SNoW. The most successful update rule is a variant of Littlestone's
Winnow update rule, a multiplicative update rule tailored to the situation in which the set of input
features is not known a priori, as in the in�nite attribute model [Blum, 1992]. A sparse variation of
Perceptron is also available. This mechanism is implemented via the sparse architecture of SNoW.
That is, (1) input features are allocated in a data driven way { an input node for the feature i is
allocated only if the feature i is active in the input example and (2) a link (i.e., a non-zero weight)
exists between a target node t and a feature i if and only if i has been active in an example labeled
t. Thus, the architecture also supports augmenting the feature types from external sources in a
exible way.

The Winnow update rule has, in addition to the threshold �t at the target t, two update
parameters: a promotion parameter � > 1 and a demotion parameter 0 < � < 1. These are being
used to update the current representation of the target t (the set of weights wt

i
) only when a mistake

in prediction is made. Let At = fi1; : : : ; img be the set of active features that are linked to the
target node t. If the algorithm predicts 0 (that is,

P
i2At

wt

i
� �t) and the received label is 1, the

active weights in the current example are promoted in a multiplicative fashion: 8i 2 At; w
t

i
 � �wt

i
:

If the algorithm predicts 1 (
P

i2At
wt

i
> �t) and the received label is 0, the active weights in the

current example are demoted: 8i 2 At; w
t

i
 � � wt

i
: All other weights are unchanged. The key

feature of the Winnow update rule is that the number of examples2 it requires to learn a linear
function grows linearly with the number of relevant features and only logarithmically with the
total number of features. This property seems crucial in domains in which the number of potential
features is vast, but a relatively small number of them is relevant (this does not mean that only
a small number of them will be active, or have non-zero weights). Winnow is known to learn
eÆciently any linear threshold function and to be robust in the presence of various kinds of noise
and in cases where no linear-threshold function can make perfect classi�cation, and still maintain
its abovementioned dependence on the number of total and relevant attributes [Littlestone, 1991,
Kivinen and Warmuth, 1995].

The Perceptron update rule is used in a similar way within the sparse architecture. It takes
only two parameters, a threshold and a learning rate. As in Winnow, whenever a mistake is made,
the weight of an active feature is updated. In this case, it is updated by either adding the learning
rate parameter or subtracting it, depending on whether the mistake is on a positive example or a
negative one, respectively.

In case of naive Bayes, the weights are simply the logarithm of the fraction of the examples that
are labeled according to the target (see, e.g., [Roth, 1999, Roth, 1998]. In addition, the relative
weight of the target is used as \prior", and a �xed smoothing is used.

Notice that when using Perceptron and Winnow, examples that are positive for a target (i.e.,

2In the on-line setting [Littlestone, 1988] this is usually phrased in terms of a mistake-bound but is known to
imply convergence in the PAC sense [Valiant, 1984, Helmbold and Warmuth, 1995].

9

which are labeled with the target) are considered negative for all other targets. This is not the case
for naive Bayes. Each target takes into account only the examples labeled with it (i.e., the target
representation is learned only from positive examples).

Once target subnetworks have been learned and the network is being evaluated, a decision
support mechanism is employed, which selects the dominant active target node in the SNoW unit
via a winner-take-all mechanism to produce a �nal prediction. It is possible for units' output to be
cached and processed along with the output of other SNoW units to produce a more complicated
decision support mechanism (as in, e.g., [Munoz et al., 1999]).

10

Chapter 5

Using SNoW

5.1 Execution Modes

SNoW may be run in three major modes. These are: Training, Testing and Evaluation. Training
takes a set of labeled examples and generates a network which can then be used to make predictions
on future examples. Thus, training must always be performed before testing or evaluations can be
performed. Testing is performed on a set of (labeled or unlabeled) examples contained in a �le.
The results of the test are written to the terminal display or to a �le. Evaluation is used to make
a prediction based on a labeled or unlabeled example supplied on the command line.

Training consists of presenting labeled examples (see the section on example �le format below)
and learning a weight vector representation for each target concept. At the completion of training,
the resultant network is written to the network �le.

Testing consists of presenting examples to the system and predicting a label. This is done by
using the representation learned for each of the targets to compute that target's activation level
given the new example, and choosing the one with the highest activation. The results of testing
can be output in a number of ways.

Several other modes of operations, including incremental learning, are supported.

5.2 Command line usage

5.2.1 Mode Selection

The basic usage is as follows:
snow -mode [options]

Where -mode must be one of the following:

-train : The system is run in training mode and the input �le is considered to be a set of labeled
training examples. Each example in the �le is considered a positive example for all targets
which are included (active) in the example, and negative examples for all other targets (absent
from the example).

-test : The system is run in a batch test mode. The input �le can be labeled or unlabeled testing
examples. Each example in the �le is presented to the system and classi�ed. If the examples
are labeled, the result of the classi�cation can be compared with the label of the example and
scored, with a �nal accuracy reported after all examples are presented. The result of each
prediction can also be output to a �le in a number of ways and scored externally.

11

-evaluate : The system is run in an interactive test mode. A single labeled or unlabeled example
is supplied on the command line. The process terminates after making a prediction for this
single example. The results are output and the target with the strongest activation is also
returned to the operating system as the exit status of the process which made prediction.
Note that running the system in evaluate mode loads the network once for each example, and
thus is not the best way to process large sets of examples.

Some options are required, some are optional and some may be required, optional or superuous
depending on the mode in which the system is run. For a view of the required options, refer to
Chapter 7, the Tutorial.

5.2.2 Architecture De�nition

De�ning the architecture is one of the required options. This can be done using an architecture �le
as described below, or directly in the command line. The main part of de�ning the architecture is
setting up the target nodes. For each target node one has to specify which of the update rules is
used to when learning it representation. If Winnow (-W) are Perceptron (-P) are used, it is possible
to specify also their parameters; otherwise, default parameters are used.

Target de�nition is done by specifying for which target ID's a representation is learned. Either
single ID's or ranges of targets can be given. For example, the simplest architecture �le may be -W
0-1

It speci�es two targets, for the target ID's 0 and 1, to be learned using the Winnow update rule
with the default parameters. This architecture is suitable for a two-class situation.

For a more involved case consider an architecture �le which reads:

-W 1.5,0.8,4.0,0.5:0-2,5,9

-P 0.1,4.0,0.2:1-3,4,8

Here, Winnow will be used to learn a representation for targets 0, 1, 2, 5, and 9, and Perceptron
will be used for targets 1, 2, 3, 4, and 8. Note that when more than one algorithm is speci�ed for a
single target ID, the outputs of those algorithms will be combined to make a single prediction for
that target.

Although the targets can be de�ned in the command line, we recommend using the architecture
�le option, especially when experiments are done. This would a allow a simple way of running
with various parameters and architectures. The options for the architecture de�nition are speci�ed
below.

-A <architecture file> : Speci�es the name of a �le from which to read the desired architecture
de�nition and parameters. The �le may look, for example, like:

-W 1.5,0.8,4.0,0.5:0-1

-P 0.1,4.0,0.20:0-1

-e 1

-r 4

-B :targets : Speci�es targets that will be trained using the naive Bayes algorithm.

-P <learning rate>, <threshold>, <default weight>:targets : Speci�es targets that will be
trained using the single layer perceptron algorithm, along with their parameters.

12

-W <promotion>, <demotion>, <threshold>, <default weight>:targets : Speci�es targets that
will be trained using the winnow algorithm along with their parameters.

5.2.3 Algorithm Parameter De�nition

The following parameters are all optional. As in all other cases, they can be de�ned as parts of the
architecture �le or in the command line.

-b <k> : Speci�es the smoothing parameter to be used in Bayes learners (default 15).

-d <none | abs:<k> | rel> : Speci�es the discarding method, if any. Absolute discarding dis-
cards components of the weight vector with a magnitude less than some threshold (speci�ed
as a real number k in the command line). Relative discarding compares the weights for a
given feature within a network. The smallest of those weights is discarded and the rest are
adjusted accordingly. Note that this method reduces the total weight (magnitude) of the
weight vector. This method was developed speci�cally for winnow networks and is probably
best used only with winnow networks. Discarding is done only when training, every 1000
examples. The default is none.

-e <i> : This option sets the eligibility threshold{ a minimum number of times any given feature
must be active before it can be added to a network. If unspeci�ed, the default value is 2. For
example, if -e 3 is speci�ed and feature 12836 appears twice in the training �le, then this
feature would not be included in the network. Something to consider when using this option
is that the corresponding weight for the feature cannot be promoted or demoted until the
feature is included in the network. This option doesn't apply to naive Bayes learners and is
only applicable to training. Also, when running small experiments, it is sometimes helpful to
set the eligibility threshold to 1.

-i <+ | -> : This option speci�es whether to use incremental learning. That is, whether or not
mistakes made during testing are used to update the network . If -i + is speci�ed then
mistakes made during testing are used to update the network and the network is written out
after the test with \.new" appended to its original �lename.

QUESTION HERE

It is possible to use this option in order to initially train with one algorithm, and then re-
train the resulting network with a di�erent algorithm. This option only a�ects perceptron
and winnow networks. In order to use this option, test examples must be labeled.

-l <+ | -> : This option speci�es whether test examples are labeled or not.

-m <+ | -> : This option speci�es whether training examples should be treated as having multiple
labels. If -m + is speci�ed, the targets ID's that appear in a training example will not be
treated as features for training, thus a target will not be learned as a function of other
features. In unspeci�ed, or if -m - is speci�ed, targets will also be treated as features during
training and can occur in the representation of other features. This option is of interest in
text categorization applications when, typically, examples (documents) have multiple labels,
but we do not learn one label in terms of the other.

-p <k> : This option speci�es a prediction threshold which must be met in order for SNoW to
make a prediction. If unspeci�ed, it defaults to 0.0. This option can be used as a con�dence

13

�ltering. Filter out cases in which SNoW is not con�dent enough in the prediction. In test
mode, if the activations of the targets with the two highest activations di�er by less than the
prediction threshold, no prediction is made and a targetID of -1 is output. This only applies
to the accuracy and winners output modes.

-r <i> : Speci�es the number of cycles (passes) through the training data. If unspeci�ed the
default is 2. Multiple passes through the training data can sometimes improve the resulting
network. In ce naive Bayes networks treat the training sample as a probabilistic estimate,
multiple passes do not change the resultant network, i.e. only perceptron and winnow are
a�ected by this option.

-s <s | f> : Speci�es whether to use the sparse or full network option. This setting only a�ects
perceptron and winnow networks. In a sparse (the default) network, features are only linked
to targets (that is, are given a non zero weight) if both the feature and the target have
appeared active together in an example. In contrast, a full network has each target linked
to the same set of features, that is if a feature is linked to any target, then it is linked to all
targets in that network.

-w <k> : Speci�es a smoothing value for winnow and perceptron learners.

5.2.4 Input/Output Options

-a <+ | -> : Speci�es whether to use highly accurate weights for features or to approximate them
when writing out the network. If not speci�ed, the weights are approximated. This has little
e�ect on performance in most cases.

-c <i> : In training mode. The interval, in the number of examples presented, at which to output a
snapshot of the network. So every i examples, a �le named network�le.niiiii, where network�le
is the �lename speci�ed with -f (see below), n is a literal `n', and iiiii is a zero-padded value
for the number of examples presented before the snapshot was created. This option is useful
for producing a learning curve (accuracy vs. number of training examples). For example, if
network�le is `my�le.net' and -C 500 is speci�ed, then the following �les would be written
after the �rst 1000 examples were presented:

myfile.net.n00500

myfile.net.n01000

-E <errorfile> : Speci�es the name of a �le in which to write information about mistakes during
testing. If the �le already exists it is overwritten. This option is only valid during testing.

-F <networkfile> : Speci�es the name of a �le in which the resulting networks are written to
(after training) or read from (for testing).

-I <inputfile> : Speci�es the input �le from which examples are read. During training and
testing the input �le speci�es the training examples and testing examples, respectively.

-o <accuracy | winners | allpredictions | allactivations | allboth> : Speci�es which
output mode to use when reporting results during test mode. The predictions in SNoW are
done using a winner-take-all policy. That is, all the targets activation levels are compared
and the predicted target ID is the one with the largest activation level. Several out modes
are available, and are described below.

14

accuracy : This output mode requires labeled examples. SNoW compares each prediction
to each example's label and keeps track of correct and incorrect predictions, outputting
an accuracy report at the end of testing. This is the default output mode.

186 test examples presented

Overall Accuracy - 97.96%

winners : This mode outputs the targetID with the highest activation for each example in
the test set. For example, if we had targets with ID's 0, 1, and 2, output might appear
as:

1

2

0

2

1

allpredict : This mode outputs, for every example, a list of all targets and their predictions
(1 or 0, indicating if it was the chosen target for this example or not). The target with
the highest activation is predicted as true (1), and the rest are false (0). The output is
sorted by ID.

Example 47

0: 1

1: 0

2: 0

Example 48

0: 0

1: 0

2: 1

allactivations : For each example, this mode outputs the activation of each target. The
activation is a number between 0 and 1, with 1 representing a very strong positive
prediction, and 0 representing a strong negative prediction. The output is sorted by
activation.

Example 47

0: 0.95845

2: 0.60394

1: 0.44093

Example 48

2: 0.92312

0: 0.53439

1: 0.65443

allboth : This mode outputs, for every example, a list of all targets and both their activations
and predictions as described in the above modes.

Example 47

0: 1 0.95845

2: 0 0.60394

15

1: 0 0.44093

Example 48

2: 1 0.92312

1: 0 0.65443

0: 0 0.53439

-R <results file> : Speci�es the name of a �le in which the results of testing are output. If this
parameter is unspeci�ed, the output will be directed to the console.

-T <testing file> : Using this option, a network can be trained and tested in the same invocation
of snow. After training the network, test examples are read from the �le speci�ed using this
ag, and output is given just as if snow was run in test mode. In this case, the network �le
is not saved.

16

Chapter 6

File Formats

Two types of �les are used by SNoW. Examples �les are required. They store the training and
test examples and are only read by SNoW. Network �les are written by SNoW during training
and are read during testing. They store the representation for each of the target nodes, as well
as some more information on the structure of the SNoW network. The use of Network �les is not
mandatory (if the -T option is being used) but is recommended for research purposes. In addition
SNoW may use error �les and �les for reporting results.

6.1 Example Files

Example �les (�les consisting of examples) are ASCII text �les. Each line of the �le contains a single
example and ends with a colon. SNoW represent examples as a list of indices of active features,
and does not distinguish between features and class labels. All are considered features. Thus, each
example consists of a list of non-negative numbers, indices of active features, some of which may be
of special interest to the user that may like to distinguish them as targets. When SNoW receives
an example, it searches it's list of target, to see if any of them is active in the example. If it is,
this example is considered a positive example for this target. If it is not, it is considered a negative
example for this target.

Thus, a training example can have many targets active in it (many labels) and their location
within the list of active features does not matter.

In testing mode, SNoW does not need the labels, in principle. It reads the example evaluates
all existing targets on it, and produces a prediction, via a winner-take-all policy. If the user wants
SNoW to keep statistics of it's performance by itself (which is the default) then the true target (the
label needs to be supplied along with the example. In this case, it is required that the label be the
�rst (left most) feature in the example, so that SNoW can keep correct statistics, in case there are
several indices for which targets exists active in the example. Examples are thus list of the form:
7,5,1,13:

0,3,1234,123456,12,987,234,556:

In addition, it is possible to supply SNoW with a strength of the feature. This number is
supplied in parenthesis, behind the index. The default value (no parenthesis) is 1. An example
may be:
7(1.5),5(3),10(0.6),13(10):

The a�ect of the strength is that when evaluating the example, the corresponding weight of the
feature is multiplied by the strength.

17

label x1 x2 x3 x4 x5 x6 SNoW Example
false 0 0 0 0 0 1 7:
false 0 0 0 0 1 0 6:
false 0 0 0 1 0 0 5:
true 0 0 1 0 1 1 1,4,6,7:
true 0 1 0 1 0 0 1,3,5:
false 1 0 0 1 0 1 2,5,7:
true 1 0 1 1 1 0 1,2,4,5,6:
true 0 1 0 1 1 1 1,3,5,6,7:

Table 6.1: Partial truth table and SNoW examples for x2 v x5

Example

Problem HERE: 1 - does not work; 2 - need to recommend two targets For example,
consider a learning problem where a boolean concept over 6 boolean variables is to be learned. The
value of 1 might be used to represent the label true. The values 2 through 7 could represent the
variables x1 through x6 respectively. Each example is represented by a comma delimited list of
labels and active features, and ends with a colon. As a concrete example, consider the concept x2
v x5. A partial truth table for this concept and the format of SNoW examples is given in table 1.

6.2 Error Files

Error �les (generated with the -E command line option) can sometimes provide insight into why
the network failed to learn the target concept exactly. Error �les can only be created in test mode,
using labeled test examples. Error �les contain two sections. The �rst section records each learning
algorithm which was used in the network. Following the algorithms is a list of examples which were
labeled incorrectly. Each occurrence shows the example sequence number and each target's activa-
tion For example, in the following example there was a mistake on example 3 (the 3rd example in
the input �le), in which target 0 had an activation of 0.2022 and target 1 had an activation of 0.5445.

Algorithms:

1: Winnow network:(0.2, 4, 1.25, 0.8)

Ex: 3 Prediction: 1 Label: 0

0: 0.2022*

1: 0.5445

Ex: 6 Prediction: 1 Label 0

0: 0.1488*

1: 0.8999

6.3 Network Files

Network �les (speci�ed by the -F command line ag) contain all of the information required for
SNoW to recreate the structure generated during training. The �rst line of the network �le speci�es

18

the type of network �le| either lean or accurate. The lean type uses a lower degree of precision
when writing out the weights of features to conserve space. However, this has been shown to have
a negligible e�ect on performance in most cases.

The �rst line can thus be either:

networktype.lean

or:

networktype.accurate

Each target has a section of the �le, containing information on the target itself, its algorithm
and parameters, and information on its features. The header line for each target takes the following
form:

target ID priorProbability confidence count algorithm algID parameters

For example:

target 2 1 0.473593433165 42 winnow 1 1.35 0.8 4 0.2

This speci�es a target with a ID 2, prior probability 2, con�dence 0.4736, and which appeared
active in 42 examples. It uses a winnow algorithm with ID 1, alpha 1.35, beta 0.8, threshold 4, and
default weight 0.2.

Following the target header, the target's features are enumerated. Each line corresponds to a
single feature, in the format:

ID : algID : featureID : count updates weight

If the lean network type is used, lines will take the format:

featureID : count updates weight

For example:

1 : 2 : 34 : 13 6 0.3645000000000000462

This speci�es a feature with corresponds to target concept 1 and algorithm 2, with featureID
34. It appeared in 13 positive training examples for target 1, had its weight updated 6 times and
has a weight of about 0.3645.

19

Chapter 7

Tutorial

This tutorial is meant to demonstrate how to use many of the basic options of SNoW. We show
how to start with training examples, train a classi�er, and then test the classi�er with some more
examples. These are the basic steps to using SNoW. The example task given is context-sensitive
text correction. The task is to train a classi�er with many examples of the correct usage of the
words \their" and \there" so that, given a test context, the classi�er can decide which word best
�ts the context.

7.1 Training

We start with a �le containing labeled examples. Our target concepts have ID's of 0 and 1, and all
other numbers appearing in the examples represent other features present (word colocations, parts
of speech, etc.). The �rst example appearing in the training �le is:

0,96,116,119,120,128,138,157,212,230,328,451,454,601,636,641,

646,773,774,815,872,897,937,1134,1160,1197,1231,1267,1461,1503,

1576,1640,1654,1838,1845,1878,1937,1941,1946,1953,1986,2012,

2387,2612,2958,3211,3221,3222,3233,3242,3308,3315,3318,3487,

3524,3526,3897,4037,4136,4404,6933,6991,7269,7298,7398,7488,

7539,7562,7755,7794,8032,8377,9336:

Here, the example has a label of 0, meaning that it will be a positive example for target 0 and
a negative example for all other targets (in our case, just target 1. The label must always appear
as the �rst feature, and in training, labels must always be present. All examples are terminated
with a colon. The original sentence which the above example was generated from is:

In the interim between now and next year, we trust the House and Senate will put <<

their >> minds to studying Georgia's very real economic, fiscal and social problems

and come up with answers without all the political heroics.

The above example was generated from this sentence by using Feature Extractor, a program
which generates features based on speci�ed patterns| words near the target word, parts of speech
near the target word, and numerous other options. In our set of data, the label 0 in examples
represents the target concept \their" and the label 1 represents the target concept \there."

20

Given our training data (provided in the �le traindata.feat), we can now train a classi�er which
will be able to classify new examples from outside the training set based on what the system
learned about the features present in the training data. In order to train our network, we must
invoke SNoW in training mode with our training examples as the input �le. We do this as follows:

snow -train -I tutorial/traindata.feat -F tutorial/test.net -W :0-1

This gives the output:

SNoW - Sparse Network of Winnows Plus

Cognitive Computations Group - University of Illinois at Urbana/Champaign

Version 2.01.14

Network file: 'tutorial/test.net' Input file: 'tutorial/traindata.feat' Network Spec

-> w(:0-1),

The output from SNoW lets us know if there were any errors in the parameters we entered, and
also gives information on the learning algorithm used. Here, we used a Winnow learning algorithm
with default parameters by specifying the -W :0-1 ag. This tells SNoW to use a default set of
parameters (which work quite well for most experiments) and that our target concepts have ID's
0 and 1. Di�erent algorithms and parameters can be speci�ed on the command line or in an
Architecture �le, as will be shown later in the tutorial.

The training made two cycles through our training data, which is the default. The number of
cycles can be speci�ed on the command line, and generally, the more cycles used, the closer the
classi�er comes to completely learning the training data.

7.2 Testing

We now have our network �le, test.net, which contains the parameters of our Winnow algorithm
as well as weights for all of the features which appeared in our training examples. Now that we've
trained our network, we can proceed to testing it on some more examples.

snow -test -I tutorial/testdata.feat -F tutorial/test.net

Our test �le contains labeled examples of exactly the same format as those used in testing, and
we can just use the default output mode and let SNoW score our accuracy. In this mode, each
example is given to the system and the resulting prediction output by the classi�er is compared to
the example's label. A mistake is scored if the two do not match. Here are our results:

SNoW - Sparse Network of Winnows Plus

Cognitive Computations Group - University of Illinois at Urbana/Champaign

Version 2.01.14

Network file: 'tutorial/test.net' Input file: 'tutorial/testdata.feat' Directing

output to console

850 test examples presented

Overall Accuracy - 97.18%

21

We can also verify how well the training data was learned by the classi�er by testing with our
training set as our test examples. If our accuracy is 100%, the classi�er completely learned the
training set.

To receive output on a more detailed level, we can specify di�erent output modes on the com-
mand line. We can do this by using the -o outputmode ag. For example, executing SNoW as
follows:

snow -test -I tutorial/testdata.feat -F tutorial/test.net -o allactivations

This gives the output:

Example 1

0: 0.351881

1: 0.934405

Example 2

0: 0.792367

1: 0.134328

Example 3

0: 0.110389

1: 0.780127

7.3 Other Options

If we want to use algorithms other than the default, we can specify them by using the -W, -P, and
-B ags with their associated parameters. Each algorithm we de�ne can be assigned to any number
of targets. To run the tutorial experiment with algorithms we specify, we can run SNoW as follows:

snow -train -I tutorial/traindata.feat -F tutorial/test.net

-W 1.5,0.8,4.0,0.5:0 -P 0.1,4.0,0.20:1

This uses a Winnow algorithm for target 0 and a Perceptron for target 1. We could also execute
SNoW like this:

snow -train -I tutorial/traindata.feat -F tutorial/test.net

-W 1.5,0.8,4.0,0.5:0-1 -P 0.1,4.0,0.20:0-1

This will use both a Winnow and Perceptron on each target, combining the results of the
algorithms to calculate a single activation for each target.

Also, command line parameters can be speci�ed in an architecture �le. This �le is speci�ed
with the -A ag, and contains parameters which don't need to be changed frequently. For example,
when running an experiment over many datasets, the only parameters which change from dataset
to dataset will usually be the -I input�le and the -F network �le ags. We could thus use an
architecture �le with most of our command line options. The �le (named archfile) could read:

-W 1.5,0.8,4.0,0.5:0-1

-P 0.1,4.0,0.20:0-1

22

-e 1

-r 4

Using this architecture �le, we have de�ned two algorithms, set the eligibility threshold to 1,
and set SNoW to train on four cycles through the training data. Now we can use these parameters
with any data �les. We execute SNoW with the architecture �le speci�ed:

snow -train -I tutorial/traindata.feat -F tutorial/test.net -A archfile

23

Bibliography

[Blum, 1992] Blum, A. (1992). Learning boolean functions in an in�nite attribute space. Machine

Learning, 9(4):373{386.

[Golding and Roth, 1999] Golding, A. R. and Roth, D. (1999). A winnow based approach to
context-sensitive spelling correction. Machine Learning, 34(1-3):107{130. Special Issue on Ma-
chine Learning and Natural Language.

[Helmbold and Warmuth, 1995] Helmbold, D. and Warmuth, M. K. (1995). On weak learning.
Journal of Computer and System Sciences, 50(3):551{573.

[Kivinen and Warmuth, 1995] Kivinen, J. and Warmuth, M. K. (1995). Exponentiated gradient
versus gradient descent for linear predictors. In Proceedings of the Annual ACM Symp. on the

Theory of Computing.

[Littlestone, 1988] Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine Learning, 2:285{318.

[Littlestone, 1991] Littlestone, N. (1991). Redundant noisy attributes, attribute errors, and linear
threshold learning using Winnow. In Proc. 4th Annu. Workshop on Comput. Learning Theory,
pages 147{156, San Mateo, CA. Morgan Kaufmann.

[Munoz et al., 1999] Munoz, M., Punyakanok, V., Roth, D., and Zimak, D. (1999). A learning
approach to shallow parsing. In EMNLP-VLC'99, the Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora.

[Roth, 1998] Roth, D. (1998). Learning to resolve natural language ambiguities: A uni�ed ap-
proach. In Proc. National Conference on Arti�cial Intelligence, pages 806{813.

[Roth, 1999] Roth, D. (1999). Learning in natural language. In Proc. Int'l Joint Conference on

Arti�cial Intelligence, pages 898{904.

[Roth and Zelenko, 1998] Roth, D. and Zelenko, D. (1998). Part of speech tagging using a network
of linear separators. In COLING-ACL 98, The 17th International Conference on Computational

Linguistics, pages 1136{1142.

[Valiant, 1984] Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM,
27(11):1134{1142.

24

