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Abstract

Training a structured prediction model involves performing
several loss-augmented inference steps. Over the lifetime of
the training, many of these inference problems, although
different, share the same solution. We propose AI-DCD,
an Amortized Inference framework for Dual Coordinate
Descent method, an approximate learning algorithm, that ac-
celerates the training process by exploiting this redundancy
of solutions, without compromising the performance of the
model. We show the efficacy of our method by training a
structured SVM using dual coordinate descent for an entity-
relation extraction task. Our method learns the same model
as an exact training algorithm would, but call the inference
engine only in 10% – 24% of the inference problems en-
countered during training. We observe similar gains on a
multi-label classification task and with a Structured Percep-
tron model for the entity-relation task.

Introduction
The desired output in many machine learning tasks is a struc-
tured object such as a tree, an alignment of nodes or a se-
quence. Learning prediction models for such problems is
considerably difficult, because of the inter-dependence of
the output variables comprising the structure. In the past
decade, several structured learning models have been pro-
posed (Collins 2002; Taskar, Guestrin, and Koller 2004;
Tsochantaridis et al. 2005). Training these models usually
involves performing an inference step repeatedly, where the
algorithm finds the best structure according to the current
model for a training example.

Existing learning algorithms (Tsochantaridis et al. 2005;
Joachims, Finley, and Yu 2009; Shevade et al. 2011; Chang
and Yih 2013; Lacoste-Julien et al. 2013) often treat the in-
ference procedure as a black-box and solve the inference
problems encountered during training independently. How-
ever, a learning algorithm makes multiple passes over the
training examples, and updates its parameters for each ex-
ample several times. Consequently, the inference problems it
encounters may often have identical or similar solutions. To
verify this intuition, we trained a structured SVM model on
a joint entity-relation recognition task (Roth and Yih 2007)
and plotted the numbers of inference engine calls (black
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Figure 1: The number of inference engine calls by a raw
solver, an oracle solver and our method when training a
structured SVM model on an entity-relation recognition cor-
pus. The raw solver calls an inference engine each time
an inference is needed, while the oracle solver only calls
the engine when the solution is different from all solutions
observed previously. Our method significantly reduces the
number of inference calls required to train a model.

solid line) made in Figure 1. As shown in the figure, a large
fraction of these calls returns identical solutions, as indicated
by the blue dotted line, even when the objective functions
of the inference problems are different. This suggests the
possibility of amortizing these inference steps (see details in
caption of Figure 1).

In this paper, we propose to amortize the inferences dur-
ing learning, accelerating the training process of a struc-
tured model. That is, we measure the overall cost of infer-
ence over the life time of the algorithm, and show that this
“amortized” cost can be significantly reduced. Our frame-
work only depends on the fact that the inference is formu-
lated as an Integer Linear Program (ILP), a very general
condition, as discussed below, that does not restrict its ap-
plicability. Given a tolerance parameter ε, we derive a con-
dition which, when satisfied, guarantees that two different
inference problems posed as ILPs will yield similar solu-
tions, such that the optimal solution of one problem is an
(1 + Mε)-approximation of the other (here M is a prob-
lem specific constant). We show that this approximation en-
joys sound theoretical guarantees. We further consider ad-
justing ε during training, and provide guarantees that a dual



coordinate descent solver (DCD) with amortized inference
converges to the same optimal solution as in the case where
exact inference is used. We provide sound theoretical prop-
erties of the proposed methods and show empirically (Fig-
ure 1), that our framework can significantly reduce the num-
ber of inference calls required for reaching a certain level of
performance (red dashed lines).

Amortized inference techniques for structured prediction
have been studied in (Srikumar, Kundu, and Roth 2012;
Kundu, Srikumar, and Roth 2013), where the authors amor-
tized the inference calls at test time. However, using amor-
tization during training is more challenging because 1) in
the test phase, a fixed model is used, while in the training
phase, the model changes gradually and therefore the infer-
ence problems show more variability in terms of solutions;
2) in the test phase, a cache can be precomputed using a
large corpus, while in the training phase, the cache has to be
accumulated in an online fashion.

Our learning framework is related to approximate training
paradigms (Finley and Joachims 2008; Meshi et al. 2010;
Hazan and Urtasun 2010; Sutton and McCallum 2007;
Samdani and Roth 2012), but with some crucial differences.
These methods use approximate inference to find subopti-
mal solutions to otherwise intractable inferences problems.
In contrast, we focus on scenarios where exact solutions can
be computed, developing an approximate scheme to accel-
erate training without affecting the solution quality. Caching
inference solutions has been discussed in a different context
for 1-slack cutting plane method (Joachims, Finley, and Yu
2009), where cached solutions can be used to generate a new
cutting-plane. We will discuss this in later sections.

The proposed framework is general for several reasons.
First, the formulation of the inference step as an ILP prob-
lem is extremely general. Many inference problems in natu-
ral language processing, vision and other fields can be cast as
ILP problems (Roth and Yih 2004; Clarke and Lapata 2006;
Riedel and Clarke 2006). In fact, all discrete MPE problems
can be cast as ILPs (Roth and Yih 2004; Sontag 2010). Sec-
ond, our framework is independent of the inference engine
used to solve the inference problems but it can maintain the
exactness (or approximation) guarantees of the solver cho-
sen by the user. Third, amortized inference can be plugged
into any learning framework which requires solving in-
ference repeatedly. (e.g., (Joachims, Finley, and Yu 2009;
Lacoste-Julien et al. 2013)).

Amortized Inference
Let y = {y1, y2, · · · yN} be a structure where yj ∈ Yj ,
a discrete set of candidates for the output variable yj , and
y ∈ Y , a set of feasible structures. The inference problem
in structured prediction attempts to find the best structure
y∗ ∈ Y for x, according to a given model w

y∗ = arg maxy∈Y wTφ(x,y). (1)

φ(x,y) is a feature vector extracted from both input x and
output structure y. One can use a binary vector z = {zj,a |
j = 1 · · ·N, a ∈ Yj}, z ∈ Z ⊂ {0, 1}

P
|Yi| to represent the

output variable y, where zj,a denotes whether yj assumes

the value a or not. This way (1) can be reformulated as a bi-
nary integer linear program (ILP) as noted in (Roth and Yih
2004; 2007), where linear constraints are added to enforce
problem-specific constraints on legitimate z:

z∗ = arg maxz∈Z cT z, (2)
where cT z = wTφ(xi,y),

∑
a zj,a = 1 and cj,a is the

coefficient corresponding to zj,a.
Some specific output structures (e.g., linear chain struc-

ture) allow the inference to be cast as a search problem, for
which efficient exact algorithms are readily available (e.g.,
Viterbi algorithm). However, the inference in general struc-
tured prediction problem is usually computationally expen-
sive. Srikumar, Kundu, and Roth (2012) observed that (1)
different objective functions often yield the same solution,
and (2) only a small fraction of the exponentially many pos-
sible structures is actually seen in practice. They showed that
significant speed-up can be obtained for inference problems
posed as ILPs (Eq. (2)), by characterizing the set of ILP ob-
jectives which share the same solution. The following the-
orem generalizes Theorem 1 from (Srikumar, Kundu, and
Roth 2012).
Theorem 1 Let p and q be inference problems that share
the same feasible set and have the same number of variables.
Let yp = {yp1 , y

p
2 , ...y

p
N} and yq = {yq1 , y

q
2 , ...y

q
N} be the

optimal solutions to the inference problems p and q respec-
tively, with corresponding binary representations zp and zq.
Denote the objective function of p by fp(z) = cp · z, and
of q by fq(z) = cq · z. W.l.o.g, assume fq(zp) ≥ 0 and
fq(zq) ≥ 0. If there exists a constant M ∈ R+ such that

M ≥
∑

j
(|cq

j,ypj
|+ |cq

j,yqj
|)/fq(zp) (3)

and cp and cq satisfy the following condition:
(2zpj,a − 1)(cpj,a − c

q
j,a) ≤ ε|cqj,a|, ∀j, a (4)

then zp is an (1/(1 +Mε))-approximation to the inference
problem q. That is, fq(zq) ≤ (1 +Mε)fq(zp).
To use this theorem, one would store a large cache of (p, cp)
pairs with their solutions. Upon encountering a new infer-
ence problem q, we look in the cache for p that satisfies
(4). We thus obtain a (1/(1 +Mε))-approximate solution to
q, saving a call to the inference engine. We later show that
such approximate solutions suffice for training purposes.
Note that this scheme is oblivious to the inference engine
used. When the tolerance parameter ε = 0, the solution ob-
tained from the above process is exact. Otherwise, a large
ε increases the number of inference problems that can be
amortized, but also amplify the risk of obtaining suboptimal
solutions.1 The theorem assumes the optimal objective func-
tion value of q is positive. If the assumption is not satisfied,
one can add a dummy variable with a large coefficient, and
the theorem holds. Note that constructing an ILP problem
for (2) and checking condition (4) are usually cheaper than
solving Eq. (1).

1Srikumar, Kundu, and Roth (2012) proposed to use (2zpj,a −
1)(cpj,a − c

q
j,a) ≤ ε, ∀j, a for approximate amortized inference

without providing a guarantee. Applying a similar derivation, we
can prove that fq(zq) − fp(zp) ≤ 2εN under their condition,
where N is the number of output variables.



Learning with Amortized Inference
When training a structured prediction model, an inference
engine repeatedly solves (7) for every training instance. This
step is, in general, computationally expensive. Although
ways to reduce the number of inference calls during train-
ing have been studied, they often treat this inference step
as a black box, and overlook the possibility of amortizing
the inference step. In the following, we present AI-DCD,
an Amortized Inference framework for Dual Coordinate
Descent method that accelerates the training process by
amortizing the inference problems. We also apply the same
framework to Structured Perceptron and refer to it as AI-
SP(Amortized Inference for Structured Perceptron).

Structured SVM with Amortized Inference
We start by incorporating amortized inference technique in
training a structured SVM model with dual coordinate de-
scent (DCD) (Chang and Yih 2013). We are given a set of
annotated training instances {xi,yi}li=1,xi ∈ X ,yi ∈ Y .
Training a structured SVM model w involves solving the
following optimization problem:

minw,ξ
1
2
wTw + C

∑
i
`(ξi)

s.t. wTφ(y,yi,xi)≥∆(yi,y)−ξi, ∀i,y ∈ Y,
(5)

where φ(y,yi,xi) = φ(yi,xi) − φ(y,xi). We use `(ξ) =
ξ2 (L2-loss) here. ∆(yi,y) is a loss function that measures
the difference between the gold structure yi and the pre-
dicted structure y. DCD solves the dual form of (5):

minα≥0
1
2

∥∥∥∥∑αi,y

αi,yφ(y,yi,xi)
∥∥∥∥2

+
1

4C

∑
i

(∑
y
αi,y

)2

−
∑

i,y
∆(y,yi)αi,y.

(6)

We define the objective function in Eq. (6) to be D(α).
Each dual variable αi,y corresponds to a feasible output
structure y and an example xi. The dual optimum α∗

and the primal optimum w∗ have the relationship w∗ =∑
i,y α

∗
i,yφ(y,yi,xi). In a linear model, we can maintain

a temporary vector w ≡
∑
i,y αi,yφ(y,yi,xi) while solv-

ing (6) to assist the computations (Hsieh et al. 2008).
In general, the number of variables in (6) is exponentially

large. Therefore, the dual method maintains an active set A
and only updates αi,y ∈ A while fixing the rest αi,y /∈ A
to 0. To select a dual variable for update, DCD solves the
following optimization problem for each example xi:

ȳ = arg maxy∈Y (−∇D(α))i,y
= arg maxy∈Y wTφ(xi,y) + ∆(yi,y)

(7)

and adds αi,ȳ into A if

−∇D(α)i,ȳ > δ, (8)

where δ is a user specified tolerance parameter. Eq. (7) is
often referred to as a loss-augmented inference problem. In
practice, one may choose a loss ∆(yi,y) such that Eq. (7)
can be formulated as an ILP problem (2).

Algorithm 1 A Dual Coordinate Descent Method with
Amortized Inference

1: w ← 0,α← 0,A = ∅, and an initial cache Ω = ∅
2: while stopping conditions are not satisfied do
3: for all (xi,yi) (loop over each instance) do
4: ȳ ← InferenceSolver(q,Ω, ε̄), where q be the ILP

of Eq. (7) with w,xi,yi.
5: Add (ȳ,q) to Ω.
6: if αi,ȳ /∈ A and −∇D(α)i,ȳ > δ, holds then
7: A ← A∪ {αi,ȳ}.
8: while inner stopping conditions are not satisfied do
9: update αi,y and w by Eq. (10) for αi,y ∈ A.

10: return w

Function: InferenceSolver(q,Ω, ε̄):
11: for all p ∈ Ω and p ∈ [Q], where [·] is the set of all

inference problems with same feasible set. do
12: if condition (4) holds (with ε set to be ε̄) then
13: return yp
14: return yq by solving q using an ILP solver.

Starting from an initial cache Ω = Ω0, AI-DCD main-
tains a cache that stores the augmented-loss inference prob-
lems involved in the training process and their correspond-
ing solution. The training process generates a sequence of
models w0,w1, · · · ,w∗ and alternates between two phases
1) the inference phase and 2) the model update phase. The
procedure is described in Algorithm 1.
Inference Phase. In the inference phase, AI-DCD loops
over each training instance and chooses active variables
based on Eq. (7). We pose Eq. (7) as an ILP problem q. Then
for each entry p ∈ [Q] in the cache, if condition (4) holds,
we assign yp as the solution to q. Here [Q] is the set of all
inference problems with the same feasible set as problem q.
Otherwise, we solve q by calling the inference engine. Once
we obtain the solution to q, we add yq to the cache for fu-
ture iterations. This way, we populate the solution cache in
an online fashion during training.

To reduce the overhead of verifying Eq. (4), we partition
the problems in [Q] into groups based on their optimal solu-
tion. When solving q, we first find

y′ = arg maxy∈{yp|p∈[Q]} objective of q. (9)

and then we only check cached problems whose optimal so-
lution is y′. This approach is related to the caching heuristic
in (Joachims, Finley, and Yu 2009) (see later section).
Model Update Phase. In the model update phase, we se-
quentially visit αi,y ∈ A and update the model based on
solving a one-dimensional sub-problem:

d̄i,y = arg mind∈RD(α+dei,y) s.t. αi,y + d≥0

αi,y ←αi,y + d̄i,y, and w ← w + d̄i,yφ(y,yi,xi).
(10)

Note that we maintain A throughout the optimization pro-
cess. Therefore, once an αi,y is added into A, it will be up-
dated at every iteration. To maintain a small size of A, we
remove bounded dual variables using a shrinking strategy
described in (Chang, Srikumar, and Roth 2013).



Stopping Condition. We follow (Tsochantaridis et al. 2005;
Hsieh et al. 2008) to stop the training process if no candidate
structure is added during current iteration and if the ‖ · ‖∞
norm of the projected gradient associated with the α vari-
ables in the working set is bounded by δ.
Analysis for AI-DCD. We use the analyses presented in
(Finley and Joachims 2008). They consider two types of ap-
proximations for a combinatorial optimization problem. An
under-generating method (e.g., greedy search) finds a sub-
optimal feasible solution, while an over-generating method
(e.g, LP relaxation) obtains an optimal solution to a superset
of the feasible set. Our approximate inference scheme is in
the first category. We prove the following theorem.

Theorem 2 AI-DCD stops after adding O( l∆
2

δ2 (R2C+ 1))
candidate structures to the working set, where R =
maxi,y ‖φ(y,yi,xi)‖, l is the number of instances, δ is de-
fined in (8), and ∆ is the upper bound of ∆(yi, y). When the
optimization process stops, the empirical risk is bounded.

Proof Sketch. The polynomial bound of the working set
size is independent of the quality of the inference solution.
Furthermore, the risk bound can be derived by plugging-in
ρ = 1/(1 + Mε) in Theorems 2 and Theorems 3 in (Finley
and Joachims 2008).2

Getting Exact Learning Model. According to Theorem 2,
if we verify condition (4) with ε = 0, the solution to Eq. (5)
is exact. Then, Algorithm 1 converges to the optimal solu-
tion of Eq. (5) as a standard DCD method (Chang and Yih
2013). When ε > 0, we only obtain an approximate solution.
However, by adapting ε along iterations, AI-DCD can prov-
ably converge to the optimum of (5). The following theorem
provides the conditions:

Theorem 3 For T, τ ∈ N, the model generated by Algo-
rithm 1 converges to the optimal solution of Eq. (5) if exact
inference is applied at least once every τ successive infer-
ence calls after iteration T .

It is trivial to see that the model is optimal if exact infer-
ence is called every time after iteration T , because the ob-
jective function of Eq. (6) is convex. However, we relax the
condition by only requiring an exact inference call every τ
successive inference calls. This can be derived from the fact
that the inference procedure is only involved in selecting αs
into the working set. A non-zero α in the optimal solution
will be selected into the working set eventually via the exact
inference call if its projected gradient is larger than 0. Note
that, the dual objective function value (6) is monotonically
non-increasing whether the inference is exact or not.

Structured Perceptron with Amortized Inference
The same amortized inference technique described above
can be applied to Structured Perceptron (Collins 2002). The
Structured Perceptron algorithm sequentially visits training

2Finley and Joachims (2008) analyze a cutting plane method
with approximate inference by considering only one example and
show that this result can be generalized to multiple examples. See
Finley and Joachims (2008) for details.

examples and solves an inference problem (1) on an exam-
ple (xi,yi) with the current model w. The updates in the
model are based on the best structured output ȳ:

w ← w + η(φ(xi,yi)− φ(xi, ȳ)),

where η is a learning rate. Similar to AI-DCD, we can main-
tain a cache during the training; hence the previous inference
problems can be used to amortize later ones.

Kulesza and Pereira (2008) prove that Structured Percep-
tron with an over-generating inference still enjoys the mis-
take bound guarantees. However, for an under-generating
method, there is no guarantee of convergence even if the data
is separable. Note that using a violation-fixing technique,
we can still maintain the mistake bound guarantees (Huang,
Fayong, and Guo 2012). We leave it for future work.

Experiments and Results
In this section, we demonstrate the results on an entity-
relation extraction and a multi-label classification task. Our
experiments aim to show the following properties: (1) the
amortization techniques significantly reduce the number of
inference solver calls, and hence the training time is reduced;
(2) with an adaptation on ε, the model converges to the same
objective function value; (3) with the help of pre-cached
examples, we achieve higher amortization ratio and further
speed up the training process.

Entity-Relation Extraction The entity-relation extrac-
tion task involves the simultaneous identification of entities
in a given text and the relations between them. For exam-
ple, in the sentence Lee Oswald assassinated JFK in Dallas
in 1963, we should label Lee Oswald and JFK as PERSON,
Dallas as a LOCATION and the relation KILL between Lee
Oswald and JFK. The relation should be compatible with the
types of entities, i.e. the relation KILL cannot hold between
two LOCATION entity. We modeled the prediction as a 0-1
integer linear program, where the binary variables represent
the possible assignments. We use the annotated corpus from
Roth and Yih (2007), which consists of 5,925 sentences.

Multi-label classification Multi-label classifier predicts a
set of proper labels for each instance. When label correlation
is modeled, the learning and inference is often intractable.
We use a dataset, scene3, with 6 labels and 1,211 instances
to demonstrate the performance of our method.

We implemented our algorithms based on a publicly avail-
able Structured SVM package4 in JAVA and conducted ex-
periments on a machine with Xeon E5-2440 processors. Un-
less otherwise stated, we show the performance of training
Structured SVM model with C = 0.1 with stopping condition
δ = 0.1. For Perceptron, we used an averaged Perceptron
implementation in JAVA and set the max number of itera-
tions to 100. We use a commercial package, Gurobi, as a
base solver to solve the ILP problems.

3Available at http://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/datasets

4http://cogcomp.cs.illinois.edu/page/
software_view/JLIS



Entity-Relation Extraction Task
Method ε

Model Type % Solver Calls Inf. in Training Dual Obj. Performance
Time Speedup Ent F1 Rel F1

Structured SVM
Baseline - Exact 100% 293 1 895.31 87.69 47.55
AI-DCD 0 Exact 77% 274 1.1x 895.31 87.69 47.55
AI-DCD adapt Exact 24% 162 1.8x 895.19 87.66 47.7
AI-DCD 0.1 Approx. 54% 213 1.4x 895.31 87.69 47.55
AI-DCD 1 Approx. 29% 115 2.5x 894.73 87.66 48.01
AI-DCD 10 Approx. 10% 60 4.8x 874.08 87.34 47.83

Structured SVM with strict stopping condition
Baseline Exact 100% 1,663 1 897.51 87.76 47.40
AI-SP 1 Approx. 5% 246 6.8x 897.50 87.76 47.45

Averaged Structured Perceptron
Baseline Exact 100% 705 1 - 89.09 37.44
AI-DCD 1 Approx. 36% 319 2.2x - 89.02 39.05

Multi-label Classification
Method ε

Model % Solver Inf. in Training Dual Obj. Hamming
Type Calls Time Speedup Loss

Structured SVM
Baseline Exact 100% 1,300 1 219.20 0.609
AI-DCD adapt. Exact 1.6% 18 72x 219.18 0.609
AI-DCD 1 Approx. 0.6% 12 108x 219.15 0.606

Table 1: Ratio of inference engine calls, inference time, inference speedup, final negative dual objective function value (−D(α)
in Eq. (6)) and the test performance of each method. Time is in seconds. The results show that AI-DCD significantly speeds up
the inference during training, while maintaining the quality of the solution. Remarkably, it requires 24% of the inference calls
and 55% of the inference time to obtain an exact learning model. The reduction of time is implementation specific.

Learning with Amortized Inference
We compare the following approaches for training a struc-
tured SVM model:
• Baseline: the baseline method that calls an inference en-

gine every time.
• AI-DCD (ε = ρ): Algorithm 1 using the approximate

version of the function InferenceSolver with ε set to be ρ.
Note that when ρ = 0, the InferenceSolver is exact.

• AI-DCD (adaptive ε): We consider a simple adaptation
strategy. We begin with running Algorithm 1 with ε =
10. When the stopping condition is satisfied, we switch
to use ε = 0.1 and continue the training process. When
the stopping condition is satisfied again, we change to use
exact inference (ε = 0) toward the end.

Similarly, we compare Structured Perceptron to the version
with amortized inference (AI-SP).

Table 1 summarizes the results. Checking condition Eq.
(4) takes only 0.04 ms, while executing an ILP engine takes
2ms to solve an inference sample in average. Therefore,
when a method achieves a higher amortization ratio, it takes
less time. When δ = 0.1, using amortized inference with
ε = 0 reduces about 22% of calls to an inference engine.
The improvement is more significant when checking valid-
ity using an approximate condition. With ε = 0.1, more than
46% of inference calls are amortized, while the model con-
verges to the same model as exact inferences are made. AI-
DCD (ε = 1) saves 71% of inference calls and this leads
about 60% reduction of inference time during the training.

Because inference is faster, AI-DCD (ε = 1) reduces the
total running time from 534 seconds to 297 seconds com-
pared to the baseline model. Amortized inference is espe-
cially helpful in the final stage of optimization, because the
model converges. For example, in the last iteration of AI-
DCD (ε = 0.1), only 12% of inferences require to call
an inference engine. As a result, the amortized inference
technique is particular useful when an accurate model is re-
quired. We verify this by showing the case when running
DCD solver with a strict stopping condition (δ = 0.01, max-
imal iteration=300), AI-DCD (ε = 1) speed up the inference
by 6.8 times. When ε is bigger, the model starts deviating
from the optimum. However, this can be remedied by using
an adaptive ε. Using an adaptive ε saves 45% of inference
time, while the convergence is guaranteed. Our method is
not sensitive to the choice of ε. The first 5 rows in Table 1
show that using ε ≤ 1 speedups the baseline, while obtain-
ing a solution close to the optimum.

In Theorem 1, we show that the quality of the inference
is controlled by ε and M as defined in Eq. (3). Empirically,
when ε = 0.1, M is 9.4. Therefore, a 0.5-approximate so-
lution is guaranteed. However, Theorem 1 is not tight. We
observe that the worst approximation ratio is actually 0.9996
and our inference method almost always returns an optimal
solution. Even when ε is large (ε = 10), we can obtain an
0.97-approximate solution on average during the learning
process, after 5 outer iterations of DCD.



As we mentioned in the previous section, 1-slack
SVM (Joachims, Finley, and Yu 2009) uses y′ in Eq. (9)
to generate a new cutting-plane. A similar heuristic can be
applied in DCD. If y′ is satisfied with Eq. (8), we can add
y′ into A and update w based on αi,y′ without solving in-
ference. This approach seems plausible, but does not work
well in our setting. It still requires 96.3% of the inference en-
gine calls when δ = 0.1. The main reason is that after a few
iterations, most αs associated with the optimal solution of
instances have been added into A. However, DCD updates
all α ∈ A at each loop; therefore α ∈ A are unlikely to be
satisfied with Eq. (8). As a result, this caching method does
not save inference engine calls. In contrast, the amortized in-
ference method verifies the optimality of a cached solution,
and can reduce inference calls in this case.

Table 1 also demonstrates the effectiveness of applying
amortized inference in the Structured Perceptron model. As
shown in the table, most inference problems involved in
training can be amortized. As a result, AI-SP with ε = 1 sig-
nificantly reduces the running time, while achieves almost
the same test performance.
Multi-label classification. We further ask a question: what
other structured problems can use amortized learning? We
believe that problems which involve complex output struc-
tures but less output variables will benefit most from our
framework. To empirically prove this hypothesis, we apply
our method on a multi-label classification problem. Follow-
ing Finley and Joachims (2008) and Chang et al. (2013), we
model the multi-label classification using a fully connected
pairwise Markov random field. This creates a complex struc-
tured prediction problem, where the inference is generally
intractable. The last block in Table 1 shows the results. Both
the exact (adaptive ε) and approximate (ε = 1) versions of
AI-DCD perform extremely well. That is because the num-
ber of variables involved in the ILP formulation of the pair-
wise Markov random field is small5, and the condition 4 is
more likely to be satisfied. Moreover, the intractable nature
of the problem makes the inference engine slow. Therefore,
our model speeds up the inference involved in training by an
order of 2. The amortized inference removes the bottleneck
in the training. When a raw solver is used, 71% of the train-
ing time is spent on solving the inference problems. When
an amortized inference solver is used, the ratio of the infer-
ence time to the total running time reduces to 2%.

Note that the above experiment uses an exact inference
solver. The raw solver can be replaced by any approximate
inference solver, because checking condition (4) is indepen-
dent of solver type. The amortized inference technique can
be applied in other multi-label classification frameworks.

Cross Validation using Amortization
Our framework is also applicable in situations such as cross-
validation, model selection, and feature engineering, where
we have to repeatedly run a learning algorithm with different
parameters. In the following, we demonstrate our methods
when performing a 5-fold cross validation for picking the

5For a multi-label problem with k labels, the number of vari-
ables of the ILP formulation is k + C(k, 2). In our case, k = 6.

best regularization parameter C for structured SVM on the
entity-relation recognition task. We choose C from {0.01,
0.5 0.1, 0.5, 1}, running 5 folds for each, for a total of 25
runs. δ is set to 0.1 for all folds.

We consider two caching policies. In the first, we reset
the cache every 5 runs, so the cross validation for each C
starts with an empty cache (we call this cache resetting). In
the second setting, we do not reset the cache during any of
the runs, thereby caching the inference problems in all the
25 runs (we call this cache forwarding). We compare both
these policies with the baseline of using no cache.

The total number of solver calls for the baseline is 18.9M.
With cache-resetting, this number drops to 4.4M for AI-
DCD (ε = 1). Furthermore, with cache forwarding, the num-
ber of total solver calls for AI-DCD (ε = 1) reduces to 3.3M.
When we use adaptive ε, the number of solver calls reduces
from 12.5M for cache-resetting to 7M for cache forwarding.
The reduction in solver calls is smaller when using adaptive
ε than when ε = 1, because the adaptive scheme does ex-
act inference periodically in an attempt to converge to the
optimal solution, thereby taking more iterations.

We noticed that the amortization suffers due to resetting
the cache, and therefore the amortization ratio drops in the
initial folds. We remedy this by using cache forwarding to
accumulate the cache. Indeed, using an accumulated cache
increases the average amortization ratio from 0.46 to 0.64
in AI-DCD (ε = 1). The fact that problems cached for a
different C aid in amortizing future problems also suggests
that if we need to run the learning process multiple times
(for parameter tuning, feature selection etc.), we can benefit
by populating the cache in advance. Although we performed
this experiment in a serial fashion, this is not a restriction
imposed by our amortization framework. Parameter tuning
can be done in parallel. In principle, the cache can be shared
among several threads or cluster nodes.

Discussion
This paper presents a novel approach to training structured
predictors, by amortizing the inference step. It builds on the
observation that a large number of calls to an inference en-
gine are needed in the course of training a structured predic-
tor, but even when the inference objectives are different, it
is often the case that they produce identical solutions. Ex-
ploiting a theory that efficiently recognizes whether two in-
ference objectives will produce the same solution, we show
that training structured predictors can be accelerated signif-
icantly without any performance degradation.
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