
An NLP Curator (or: How I Learned to Stop Worrying and Love NLP
Pipelines)

James Clarke, Vivek Srikumar, Mark Sammons, Dan Roth

Department of Computer Science,
University of Illinois, Urbana-Champaign.

james@jamesclarke.net, {vsrikum2,mssammon,danr}@illinois.edu

Abstract
Natural Language Processing continues to grow in popularity in a range of research and commercial applications, yet managing the
wide array of potential NLP components remains a difficult problem. This paper describes CURATOR, a NLP management framework
designed to address some common problems and inefficiencies associated with building NLP process pipelines; and EDISON, an NLP
data structure library in Java that provides streamlined interactions with CURATOR and offers a range of useful supporting functionality.

Keywords: Unstructured Information, NLP, Architecture

1. Motivation

Natural Language Processing technologies are widely
used within the research community, and increasingly
being adopted by commercial and governmental or-
ganizations as well. Tools that provide analysis of
text, marking up syntactic and semantic elements (e.g.
named entity recognizers, syntactic parsers, semantic
role labelers) are widely used – typically many such
components in combination – as inputs to a more spe-
cialized (and complex) application. However, support
for integrating these tools, and managing their outputs,
is still patchy: there are a number of frameworks avail-
able that provide services related to managing and in-
tegrating NLP components, but they come with signif-
icant limitations. These limitations may be even more
problematic in a research and development environ-
ment, where rapid prototyping is critical.
As an example, consider the task of writing a Seman-
tic Role Labeler that requires as its inputs not only
the raw text but also its part-of-speech, named entity,
and syntactic parse annotation. Multiple NLP compo-
nents exist for each of these tasks, and it is usually
unclear which version of each will work best for a
given end task. The SRL designers may want to ex-
periment with different input components – for exam-
ple, to try different syntactic parsers. But a syntactic
parser may itself have input requirements. Worse still,
different parsers may be written in different program-
ming languages. Each component may have its own
data structures and interface, and so the research team
must spend time writing interface code to handle the
different components; tools written in different pro-
gramming languages are run independently and their
results written to file to be read by downstream com-
ponents. And if another team from the same organi-
zation wishes to use the outputs of these components,
they must deal with the file format of the generated text
files – assuming the first team was thoughtful enough
to store them somewhere.

A number of researchers and developers have tried to
address the integration problem (see section 4.), but
these approaches require users to commit to a sin-
gle NLP preprocessing framework (which generally
limits them to tools from a single source) and/or a
single programming language, or end up being an
all-encompassing system with a steep learning curve.
Members of our research group, which actively proto-
types many experimental NLP components, wanted a
light-weight approach with minimal overhead. Specif-
ically, they were all interested in a programmatic inter-
face that offered access to the NLP components’ out-
puts. Beyond that – for example, regarding learning
frameworks – their needs differed: some wished to use
an existing Machine Learning framework, while others
wanted to implement their own. They also wanted ac-
cess to sophisticated components with taxing memory
requirements.
We identified a set of desiderata for users designing
NLP processing pipelines in term of capabilities. Our
users wished to:

1. Incorporate 3rd party NLP components written
in a wide range of programming languages with
only modest effort, rather than restricting the user
to a single programming language or even a single
source of components.

2. Distribute NLP components across multiple host
machines, but have a single point of access that
can be shared by multiple users.

3. Minimize the time required to learn a manage-
ment framework/build and configure an NLP
pipeline.

4. Interact with NLP components via a program-
matic interface, using appropriate (intuitive) data
structures.

5. Handle errors gracefully.

6. Cache the output of NLP components, avoid-

ing redundant processing of input text within and
across research teams, and allowing clients of the
NLP components benefit from that cache without
having to directly use it.

While there are numerous NLP toolkits and frame-
works already available, we found none that satisfied
all these requirements. We have therefore developed
CURATOR, a light-weight NLP component manager;
and EDISON, a Java library that simplifies interaction
with CURATOR and provides useful additional func-
tionality. The remaining sections of this paper describe
these tools, and describe some key differences with
other toolkits and frameworks.

2. Curator
CURATOR1 comprises a central server and a suite
of annotators (such as named entity taggers, parsers,
etc.), each of which conforms to one of a set of spec-
ified annotator interfaces. These annotators are regis-
tered with CURATOR via its configuration file, which
specifies a host, port, and dependency list for each an-
notator. The workflow of a call by a client to the cu-
rator for an annotation type is illustrated in Figure 1.
The user sends text to the CURATOR to be annotated
with semantic roles (arrow 1). CURATOR checks to
see if the requested annotation is in the cache (2) and
if so, returns it (7). If not, it will first check that all the
dependencies for annotating text with semantic roles
are satisfied. Since the semantic role labeler depends
on the parser and the part-of-speech tagger, the CU-
RATOR again checks the cache, and if the text has
not been annotated with these resources, requests them
from the client components and caches them (3, 4, and
6). With all dependencies satisfied, CURATOR now
calls the semantic role labeler for its annotation (5).
This new annotation is stored in the cache (6) and the
requested annotation is returned to the user (7).
The user stands to gain a lot from this arrangement:
1. CURATOR comes with a straightforward interface in
several programming languages based on fundamental
NLP data structures – trees, lists of spans, etc. 2. There
is a single point of contact: the user does not directly
interact with the annotation services, and so doesn’t
have to parse specialized formats or directly deal with
multiple different data structures. 3. If someone else
has already processed the same text with the required
annotation resource, the user gets the cached version
with an associated speedup. This also applies if the
user, over the course of a project, needs to run a new
version of her system over the same corpus. 4. It is
straightforward to write a wrapper for most NLP com-
ponents to make them CURATOR annotation compo-
nents. 5. The user with access to several machines with
modest memory resources rather than a single machine

1CURATOR documentation and code can be found at
http://cogcomp.cs.illinois.edu/trac/wiki/Curator

<a n n o t a t o r>
<t y p e> l a b e l e r< / t y p e>
< f i e l d>n e r< / f i e l d>
<h o s t>myhost . a t . my . p l a c e : 8 8 2 3< / h o s t>
<r e q u i r e m e n t>s e n t e n c e s< / r e q u i r e m e n t>
<r e q u i r e m e n t>t o k e n s< / r e q u i r e m e n t>
<r e q u i r e m e n t>pos< / r e q u i r e m e n t>

< / a n n o t a t o r>

Figure 2: A sample entry from a CURATOR annotator con-
figuration file. The host name and port number desired are
both given in the ‘host’ element.

with large memory can distribute the load of the dif-
ferent annotation components across them. 6. CURA-
TOR supports multiple simultaneous requests, so mul-
tiple clients can call the same CURATOR instance.

2.1. Server/Client Infrastructure
CURATOR is built on Thrift2, a library developed to fa-
cilitate uniform serialization and efficient client-server
communications across a wide variety of programming
languages. The desired data structures and server in-
terfaces are specified in a Thrift definition file. Thrift
can then be used to automatically generate CURA-
TOR client libraries for these data structures and in-
terfaces in the desired language; these libraries can be
used by the developer to write their application3.
CURATOR’s registration method – via configuration
file – makes it easy to add new services that use li-
braries generated from CURATOR’s Thrift definition.
Furthermore, CURATOR supports multiple instances
of individual annotation services, and will distribute
incoming requests to a second instance if the first is
busy with a previous request. Figure 2 shows an ex-
cerpt from a CURATOR annotator configuration file
specifying dependencies.
CURATOR is distributed with a suite of NLP tools
that the Cognitive Computation Group has found
useful (Illinois POS, Chunker, Basic and Extended
NER (Ratinov and Roth, 2009), Coreference (Bengt-
son and Roth, 2008), and SRL (Punyakanok et al.,
2008); a version of the Charniak parser (Charniak
and Johnson, 2005); a version of the Stanford con-
stituency and dependency parsers (); and the Illinois
Wikifier (Ratinov et al., 2011)). Within the group’s
own CURATOR instance, we have added the easy-first
dependency parser (Goldberg and Elhadad, 2010).

2.2. Representation of Text and Component
Annotations

CURATOR’s data structures encode annotations (e.g.
Named Entity tags) in terms of pairs of character off-

2http://thrift.apache.org
3Thrift, and hence CURATOR, currently support C++,

Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa,
JavaScript, Node.js, Smalltalk, and OCaml.

Curator

Cache

User

Semantic
Role Labeler

Parser

Part-of-
speech tagger

1

2

4

3

5

7

6

Figure 1: Retrieving semantic roles from the CURATOR. See the text for a detailed description.

sets over the original text input, associated with labels.
The design philosophy is that the original text is sacro-
sanct, and all annotations must map to that text. How-
ever, no pair of annotations is required to align with
each other – in theory, it is possible for two annota-
tion sources to disagree on token boundaries, for ex-
ample. This problem is addressed at least in part by
EDISON (see Section 3.), but CURATOR’s approach is
designed to prevent loss of information.
Figure 3 is a schematic showing CURATOR’s represen-
tation for Tree structures. Spans are the most funda-
mental layer, indicating character offsets in the under-
lying text and associating with them a label; optionally,
a set of attribute-value pairs can be specified for each
span. Nodes are associated with a Span, a label, and a
list of integers corresponding to children (also Nodes).
Trees are a list of Nodes, and an integer index into this
list that indicates the root Node. All these data ob-
jects are held in a Record, which comprises multiple
Views, each of which holds the annotations associated
with a specific source, and is labeled with that source’s
identifier to allow retrieval by the client. The Record
also holds a copy of the input text. This approach al-
lows for modular extension of the CURATOR system
by adding new Views corresponding to new NLP com-
ponents that are added.

2.3. Using CURATOR services programmatically
CURATOR’s services can be accessed using its client
classes in the desired language. The invocation sets up
a connection with the main server and requests anno-
tation services using the names specified in the CURA-
TOR’s annotation configuration file. Figure 4 shows an
illustrative example in java; Figure 5 shows an excerpt
in php.
The call requires specifying the communication proto-
col and making/closing a connection; these statements
are easily rolled into a method or class for concinnity
(see EDISON, section 3. for an example). The exam-

ples omit error handling to conserve space, but the
Thrift and CURATOR libraries may throw exceptions
if there is a problem with the annotation service re-
quested or with the curator itself. The Java example
illustrates the use of CURATOR’s Record data structure
to access elements of a Named Entity annotation.

2.4. Adding a new CURATOR service
CURATOR’s Thrift underpinnings allow for automatic
generation of libraries for the various data struc-
tures and service interfaces specified in the CURA-
TOR project, which simplifies the task of adding a new
service. To add a new service to the CURATOR in-
stance, the following steps are required:

1. Create a wrapper (“handler”) for the new NLP
component. Based on the data structure that the
component will return, it will implement one of
a small set of pre-defined interfaces: for exam-
ple, a syntactic parser that returns a single tree for
each input sentence will implement the Parser in-
terface. The wrapper will implement a method
that takes a CURATOR Record data structure as
input, and maps from the relevant View type to
the input data structure used by the component. It
will also map from the component output struc-
ture into the appropriate View type data structure.

2. Create a server to run the handler. This is largely
the same for all components, differing mainly in
the type and name of handler being run.

3. Add a corresponding annotator entry to the anno-
tator configuration file, naming any dependencies,
together with the host and port that the component
server will use (see Figure 2).

4. Start the component service, and restart the CU-
RATOR service. This forces the CURATOR ser-
vice to reread the configuration file and add the
service information to its pool.

Figure 3: An example of CURATOR data structures: Trees

3. Edison
EDISON is a Java library for representing and ma-
nipulating various NLP annotations such as syntactic
parses, named entity tags, etc. While the CURATOR’s
primary goal is to enable multiple NLP resources to be
used via a common interface and single point of con-
tact, EDISON’s goal is to enable the quick development
of NLP applications by integrating multiple views over
the text. EDISON provides a uniform representation
for diverse views, which lends itself to easy feature ex-
traction from these views.
Structures encountered in NLP are typically graphs,
where nodes are labeled spans of tokens. EDISON uses
this abstraction, and represents annotations as graphs
over Constituents, which are spans of tokens. Labeled
directed edges between the constituents represent Re-
lations. Each graph is called a View. For any text,
EDISON defines a TextAnnotation object, which spec-
ifies the tokenization of the text and stores a collection
of views over it.4

Figure 6 shows an example of EDISON’s representa-
tion. Here, the sentence “John Smith went to school.”
is annotated with three views – named entities, full
parse and semantic roles. The nodes (i.e. constituents)
assign labels to spans of text. The edges between con-
stituents (i.e. the relations) can have labels, a feature
that is needed for representing structures like depen-
dency trees. Note that some views do not have any
edges – here, the named entity view is a degenerate
graph with a single node, representing the PER anno-

4As noted earlier, CURATOR stores character level offset
information for each view to preserve the output of each an-
notator. While this strategy is useful for retaining the prove-
nance, it can be cumbersome to work with directly. Since
EDISON allows the user to provide an arbitrary tokeniza-
tion, enforcing a token-based representation does not present
a serious limitation.

tation for the span of tokens [0,2], which corresponds
to “John Smith”. EDISON provides several special-
ized views for several types of frequently encountered
design patterns: token labels (part of speech, lemma,
etc), span labels (shallow parse, named entities, etc),
trees (full parse and dependency parse), predicate-
argument structures (semantic roles) and coreference.
These specializations extend the generic view with
specialized accessors that suit the structure.
The main advantage of the uniform representation (i.e.,
views being graphs over constituents) is that it enables
EDISON to provide general-purpose operators to ac-
cess information from the views while being agnostic
to their actual content. This can help us to define a
feature representation language over EDISON (such as
the Fex language described in (Cumby and Roth, 2000)
and related work.)
For example, it is straightforward to extract features
such as the part-of-speech tag of a word; all part-of-
speech tags of words within a specified span; depen-
dency tree paths from a verb to the nearest preceding
noun; dependency tree paths from a verb to the last to-
ken of the nearest named entity that precedes it. This
last example highlights a key utility of EDISON: the
ability to extract features across different levels of an-
alytic markup of a given text span.
To give a sense of how EDISON can help with feature
extraction, we provide two examples. These examples
highlight how the representation can help in defining
complex features and can easily take advantage of the
diverse structural annotations that are available. In fig-
ure 7, the first snippet extracts the path from a token
to the root of the Stanford parse tree, while the second
one considers the more complex query of finding SRL
predicates whose arguments are named entities.

Creating EDISON objects : One way of creating
EDISON objects is to use the CURATOR. It pro-

p u b l i c vo id u s e C u r a t o r ()
{

/ / F i r s t we need a t r a n s p o r t
T T r a n s p o r t t r a n s p o r t = new TSocket (hos t , p o r t) ;
/ / we are go ing t o use a non−b l o c k i n g s e r v e r so need framed t r a n s p o r t
t r a n s p o r t = new TFramedTranspor t (t r a n s p o r t) ;
/ / Now d e f i n e a p r o t o c o l which w i l l use t h e t r a n s p o r t
T P r o t o c o l p r o t o c o l = new T B i n a r y P r o t o c o l (t r a n s p o r t) ;
/ / make t h e c l i e n t
C u r a t o r . C l i e n t c l i e n t = new C u r a t o r . C l i e n t (p r o t o c o l) ;

t r a n s p o r t . open () ;
Map<S t r i n g , S t r i n g > a v a i l = c l i e n t . d e s c r i b e A n n o t a t i o n s () ;
t r a n s p o r t . c l o s e () ;

f o r (S t r i n g key : a v a i l . k eyS e t ())
System . o u t . p r i n t l n (‘ ‘\ t ’ ’ + key + ‘ ‘ p r o v i d e d by ’ ’ + a v a i l . g e t (key)) ;

boolean f o r c e U p d a t e = t rue ; / / f o r c e c u r a t o r t o i g n o r e cache

/ / g e t an a n n o t a t i o n s o u r c e named as ’ ner ’ i n c u r a t o r a n n o t a t o r
/ / c o n f i g u r a t i o n f i l e
t r a n s p o r t . open () ;
r e c o r d = c l i e n t . p r o v i d e (‘ ‘ n e r ’ ’ , t e x t , f o r c e U p d a t e) ;
t r a n s p o r t . c l o s e () ;

f o r (Span span : r e c o r d . ge tLabe lV iews () . g e t (‘ ‘ n e r ’ ’) . g e t L a b e l s ()) {
System . o u t . p r i n t l n (span . g e t L a b e l () + ‘ ‘ : ’ ’
+ r e c o r d . getRawText () . s u b s t r i n g (span . g e t S t a r t () , span . g e t E n d i n g ())) ;

}
. . .

}

Figure 4: A snippet of Java code using CURATOR services

vides an easy to use Java interface for the CURATOR,
which aligns the character-level views to EDISON’s
own token-oriented data structures. The listing in Fig-
ure 8 shows a snippet of Java code which highlight this
usage. In addition to the CURATOR interface, EDI-
SON also provides readers for several standard text-
based dataset formats like the Penn Treebank and the
CoNLL column format.

4. Related Work
A number of NLP frameworks that can combine NLP
component exist; we identify some key limitations of
the most well-known frameworks that led to the devel-
opment of CURATOR and EDISON.

4.1. UIMA
UIMA (Götz and Suhre, 2004) is an annotator manage-
ment system designed to support coordination of anno-
tation tools, satisfying their dependencies and generat-
ing a unified stand-off markup. It supports distributed
annotation components. A UIMA system could be im-
plemented to wrap NLP components and to cache their
outputs. However, it would be a more complex un-
dertaking to use UIMA to make these components and

the cache available inline to a client application at run-
time. UIMA’s main limitation, from our perspective,
is its limited support of languages other than Java. A
significant C++ component is in development, but sup-
port for other languages (Perl, Python, and Tcl) is indi-
rect (via SWIG). UIMA has a very abstract, fairly large
API, and therefore has a significant learning curve.
Another possible limitation is the efficiency of UIMA’s
serialization. Thrift, which underpins CURATOR, sup-
ports a very wide set of programming languages, and
is known to be very efficient in terms of serialization.

4.2. GATE
GATE (Cunningham et al., 2002) is an extensive
framework supporting annotation of text by humans
and by NLP components, linking the annotations, and
applying machine learning algorithms to features ex-
tracted from these representations. GATE has some ca-
pacity for wrapping UIMA components, so should be
able to manage distributed NLP components, though
with the caveats above. GATE is written in Java, and
directly supports other languages only through the JNI.
GATE is a very large and complex system, with a cor-
respondingly steep learning curve.

f u n c t i o n u s e C u r a t o r () {

/ / s e t v a r i a b l e s naming c u r a t o r h o s t and por t , t i m e o u t , and t e x t
. . .
$ s o c k e t = new TSocket ($hostname , $ c p o r t) ;
$ s o c k e t−>se tRecvTimeou t ($ t i m e o u t ∗1 0 0 0) ;
$ t r a n s p o r t = new T B u f f e r e d T r a n s p o r t ($ s o c k e t , 1024 , 1 0 2 4) ;
$ t r a n s p o r t = new TFramedTranspor t ($ t r a n s p o r t) ;
$ p r o t o c o l = new T B i n a r y P r o t o c o l ($ t r a n s p o r t) ;
$ c l i e n t = new C u r a t o r C l i e n t ($ p r o t o c o l) ;

$ t r a n s p o r t−>open () ;
$ r e c o r d = $ c l i e n t−>g e t R e c o r d ($ t e x t) ;
$ t r a n s p o r t−>c l o s e () ;

foreach ($ a n n o t a t i o n s as $ a n n o t a t i o n) {
$ t r a n s p o r t−>open () ;
$ r e c o r d = $ c l i e n t−>p r o v i d e ($ a n n o t a t i o n , $ t e x t , $ u p d a t e) ;
$ t r a n s p o r t−>c l o s e () ;

}

foreach ($ r e c o r d−>l a b e l V i e w s as $view name => $ l a b e l i n g) {
$ s o u r c e = $ l a b e l i n g−>s o u r c e ;
$ l a b e l s = $ l a b e l i n g−>l a b e l s ;

$ r e s u l t = ‘ ‘ ’ ’ ;
foreach ($ l a b e l s a s $ i => $span) {

$ r e s u l t . = ‘ ‘ $span−>l a b e l ; ’ ’ ;
. . .

}
. . .

}
. . .

}

Figure 5: A snippet of PHP code using CURATOR services

4.3. Other NLP Frameworks
LingPipe5 is a Java-only NLP development frame-
work, which incorporates support for applying Ma-
chine Learning algorithms. NLTK (Loper and Bird,
2002) is a comparable Python-only NLP framework.
The Stanford NLP pipeline6 is monolithic (must run
on a single machine) and Java-only.

5. Conclusions
CURATOR and EDISON arose from a constellation of
needs that were not satisfied by existing NLP frame-
works. The frameworks to which we have compared
CURATOR are good for their intended purpose, and
many are well-supported by a significant programming
community. However, all have limitations we consid-
ered problematic for our purposes. CURATOR is not
intended to be a replacement for the full frameworks
we have named; it is simply a framework that more
directly supports management of diverse NLP annota-

5http://alias-i.com/lingpipe/
6http://nlp.stanford.edu/software/corenlp.shtml

tion components and the caching of their outputs, and
which foregrounds a modular, multi-view representa-
tion. We believe that others may find it useful too.
The combination of the CURATOR and EDISON make
it straightforward to harness a diverse range of NLP an-
alytics in a clean, intuitive way. They have been used
by several projects within the Cognitive Computation
Group – the group’s state-of-the-art Semantic Role La-
beler (Srikumar and Roth, 2011) and Wikifier (Ratinov
et al., 2011), both large, complex systems, strongly
depend on CURATOR/EDISON underpinnings and are
themselves being released with CURATOR interfaces,
so that they can be used in other projects in a similar
way. CURATOR and EDISON have also been used to
build many prototype systems, greatly reducing the de-
velopment effort typically involved in building an NLP
system.

6. Acknowledgements
We thank our reviewers for their helpful comments.
This research is supported by the Defense Advanced
Research Projects Agency (DARPA) Machine Read-

Raw text: John Smith went to school today.
Tokens: {0:John, 1:Smith, 2:went, 3:to, 4:school, 5:.}

PER:
0-2

NER

SRL

Predicate:
2-3

A1:0-2 A4:3-5

Parse S:
0-6

NP:
0-2

VP:
2-5

.:
5-6

NNP:
0-1

NNP:
1-2

VBD:
2-3

PP:
3-5

TO:
3-4

NN:
4-5

Figure 6: An example of EDISON’s representation. The sentence John Smith went to school. is annotated with the named
entity, parse and semantic role views here.

. . .
C u r a t o r C l i e n t c l i e n t ;
S t r i n g h = / / c u r a t o r h o s t
i n t p = / / c u r a t o r p o r t
c l i e n t = new C u r a t o r C l i e n t (h , p) ;

/ / Shou ld t h e c u r a t o r c a l l t h e
/ / a n n o t a t a r s i f an e n t r y i s found
/ / i n t h e cache ?
boolean f o r c e = f a l s e ;

T e x t A n n o t a t i o n t a ;
t a = c l i e n t . g e t T e x t A n n o t a t i o n (corpus ,

t e x t I d , t e x t , f o r c e U p d a t e) ;

c l i e n t . addNamedEnti tyView (ta , f o r c e)
c l i e n t . addSRLView (ta , f o r c e) ;

c l i e n t . a d d S t a n f o r d P a r s e (t a , f o r c e) ;

Figure 8: Creating EDISON objects using the CURATOR

ing Program under Air Force Research Laboratory
(AFRL) prime contract no. FA8750-09-C-0181. Any
opinions, findings, and conclusion or recommenda-
tions expressed in this material are those of the au-
thor(s) and do not necessarily reflect the view of the
DARPA, AFRL, or the US government.

7. References
E. Bengtson and D. Roth. 2008. Understanding the

value of features for coreference resolution. In
EMNLP, 10.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In In Proceedings of the Annual Meet-

ing of the Association of Computational Linguistics
(ACL), pages 173–180, Ann Arbor, Michigan. ACL.

C. Cumby and D. Roth. 2000. Relational representa-
tions that facilitate learning. In Proc. of the Interna-
tional Conference on the Principles of Knowledge
Representation and Reasoning, pages 425–434.

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A Framework and Graph-
ical Development Environment for Robust NLP
Tools and Applications. In ACL.

Y. Goldberg and M. Elhadad. 2010. An efficient al-
gorithm for easy-first non-directional dependency
parsing. In NAACL.

T. Götz and O. Suhre. 2004. Design and Implementa-
tion of the UIMA Common Analysis System. IBM
Systems Journal.

E. Loper and S. Bird. 2002. NLTK: the Natural
Language Toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics.

V. Punyakanok, D. Roth, and W. Yih. 2008. The
importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2).

L. Ratinov and D. Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proc. of the Annual Conference on Computational
Natural Language Learning (CoNLL), 6.

L. Ratinov, D. Downey, M. Anderson, and D. Roth.
2011. Local and global algorithms for disambigua-
tion to wikipedia. In Proc. of the Annual Meeting of
the Association of Computational Linguistics (ACL).

V. Srikumar and D. Roth. 2011. A joint model for
extended semantic role labeling. In EMNLP, Edin-
burgh, Scotland.

/ / The i n p u t i s a T e x t A n n o t a t i o n ’ t a ’ and an i n t e g e r ’ t o k e n I d ’

/ / F i r s t , we g e t t h e p a r s e t r e e g e n e r a t e d by t h e S t a n f o r d
/ / p a r s e r . TreeView i s a s p e c i a l i z e d View f o r s t o r i n g t r e e s . Here ,
/ / we do n o t use any o f t h e t r e e−s p e c i f i c f u n c t i o n a l i t y and
/ / i n s t e a d t r a v e r s e t h e graph .
TreeView p a r s e = (TreeView) t a . getView (ViewNames . PARSE STANFORD) ;

/ / Get a l l c o n s t i t u e n t s whose span i n c l u d e s t h i s t o k e n .
L i s t <C o n s t i t u e n t > t o k e n C o n s t i t u e n t s = p a r s e

. g e t C o n s t i t u e n t s C o v e r i n g T o k e n (t o k e n I d) ;

/ / Find t h e l e a f i n t h i s l i s t
C o n s t i t u e n t node = n u l l ;
f o r (C o n s t i t u e n t c : t o k e n C o n s t i t u e n t s)

i f (c . g e t O u t g o i n g R e l a t i o n s () . s i z e () == 0)
node = c ;

/ / Now , b u i l d t h e pa th by go ing up t h e edges
L i s t <S t r i n g > p a t h = new A r r a y L i s t <S t r i n g > () ;
do {

/ / A R e l a t i o n i s a d i r e c t e d edge t h a t has s o u r c e and a t a r g e t
L i s t <R e l a t i o n > i n c o m i n g R e l a t i o n s = node . g e t I n c o m i n g R e l a t i o n s () ;

/ / There can be a t most one incoming edge .
node = i n c o m i n g R e l a t i o n s . g e t (0) . g e t S o u r c e () ;

p a t h . add (node . g e t L a b e l ()) ;

} whi le (node . g e t I n c o m i n g R e l a t i o n s () . s i z e () > 0) ;

/ / F i r s t , SRL and named e n t i t y v i e w s . P r e d i c a t e A rg u m e n tV i e w and
/ / SpanLabelView are s p e c i a l i z a t i o n s o f View s u i t e d f o r t h e s e .
Pred ica t eArgumen tView s r l = (Pred ica t eArgumen tView) t a

. getView (ViewNames . SRL) ;

SpanLabelView ne = (SpanLabelView) t a . getView (ViewNames .NER) ;

L i s t <C o n s t i t u e n t > l i s t = new A r r a y L i s t <C o n s t i t u e n t > () ;

/ / P r e d i c a t e Ar g u m e n t V i e w a l l o w s us t o i t e r a t e over p r e d i c a t e s and g e t
/ / i t s argument s
f o r (C o n s t i t u e n t p r e d i c a t e : s r l . g e t P r e d i c a t e s ()) {

f o r (R e l a t i o n r : s r l . ge tArguments (p r e d i c a t e)) {

/ / Get t h e c o n s t i t u e n t c o r r e s p o n d i n g t o t h e argument edge
C o n s t i t u e n t a r g u m e n t C o n s t i t u e n t = r . g e t T a r g e t () ;

/ / For any view , we can ask f o r i t s nodes which c o n t a i n a span .
i f (ne . g e t C o n s t i t u e n t s C o v e r i n g (a r g u m e n t C o n s t i t u e n t) . s i z e () > 0) {

/ / I f t h e r e i s any such node i n t h e named e n t i t y view , we
/ / have found a p r e d i c a t e t h a t s a t i s f i e s t h e query .
l i s t . add (p r e d i c a t e) ;
break ;

}
}

}

Figure 7: Two snippets of EDISON code. The top one gets the path from a token to the root of the parse tree. If executed on
the TextAnnotation shown in Figure 6, the variable path will be the list [VBD, VP, S] at the end of the final loop.
The second snippet identifies SRL predicates which have an argument that contains a named entity.

