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Abstract

Machine learning (ML) is the study of representations and algorithms used for building functions

that improve their behavior with experience. Today, researchers in many domains are applying

ML to solve their problems when conventional programming techniques have proven insufficient.

The first such were simple, computing the setting of only a single output variable. More recently,

structured learning is adding its own set of challenges, and the specifications designed for such

learning based programs are not scaling well, nor are the programs they represent.

This thesis introduces Learning Based Programming (LBP), the study of programming language

formalisms that directly support programs that learn their representations from data. An LBP

framework embodies a set of design principles that ensures learning based programs designed under

its formalism are composable, prepared for an infinite feature space, and not necessarily dependent

on any particular learning or inference algorithms, among other things. We submit that adherence

to these principles is necessary to enable the implementation of learning based programs that scale

beyond today’s implementations.

To ensure independence from learning and inference algorithms, we present the Constrained

Conditional Model (CCM) and demonstrate that it is general enough to subsume the majority of

models described in the literature. We then present Learning Based Java (LBJ), our first attempt

at implementing an LBP framework which supports an important subset of CCMs. LBJ is a

discriminative modeling language that abstracts away implementation details of feature extraction,

learning, and inference. It also features a First Order Logic inspired syntax for expressing constraints

between independently trained classifiers. LBJ has already been used successfully in a variety of

Natural Language Processing tasks.

We evaluate LBJ with both a comprehensive questionnaire and case studies. A variety of partic-
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ipants responded to the questionnaire, including varying levels of experience in ML and LBJ. They

also applied LBJ on different tasks ranging in complexity. Simpler tasks tended to lead to a positive

evaluation of LBJ, while those who required more advanced ML techniques, especially structured

representations, found LBJ lacking. The case studies came to a similar conclusion while uncovering

situations in which LBJ’s syntactic sugar could have encoded specifications more succinctly, as well

as specific pieces of syntax that attempted to patch LBJ’s limitations.

The results of our evaluation show that LBJ leaves something to be desired; in particular, it

cannot naturally specify an arbitrary CCM. As such, we present our second offering in the LBP

line: a general purpose programming language called the Constrained Conditional Model Processing

language and designed from the ground up to support CCMs. We also present a formal semantics

for CCMP specified in the language of rewriting logic and consider several interesting test cases.

CCMP is a robust and flexible solution for structured learning techniques at both training-time and

inference-time.
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Chapter 1

Introduction

Machine learning (ML) is the study of representations and algorithms used for building functions

that improve their behavior with experience. It has become indispensable in any domain in which

high performance hard-coded solutions elude developers. Common examples include decision trees

learned by maximizing information gain, generative probabilistic models learned by maximizing

likelihood, expectation, or entropy, and linear models learned by maximizing margin. In all cases,

the ultimate goal is to derive from data a function that maps from input to output variable settings.

Today, researchers in many domains are applying ML to solve their problems when conventional

programming techniques have proven insufficient. The fields of natural language processing (NLP),

robotics, vision, human computer interaction, compilers, and others are all employing ML to harness

the information in large data sets and to solve complex problems involving many competing interests.

We refer to any such system with a learned component as a learning based program and to the study

of learning based programs as Learning Based Programming (LBP).

The first learning based programs were simple, computing the setting of only a single output

variable. Even so, non-trivial applications commonly demand a very high dimensional feature space,

and provisions must be made to ensure efficiency. As researchers turned their attention to more

challenging problems, they initially aimed to keep their approach simple. Individual components

would again contribute the setting for a single output variable, but they would often include as

input the outputs of other components. The resulting system would typically be referred to as

a pipeline. Typical implementations of pipeline systems designed each component as a separate

process with its own input and output formats and were unnecessarily large and unwieldy given

the simplicity of their high level organization. The learned components and their feature extraction

codes would be glued together with a scripting language such as PERL or bash, with hand-coded
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data representation translations at each stage. Implementing systems in this way can be tedious

and error prone. This inefficient style of system design is borne not only out of researchers’ desires

to get results quickly, but also their need to understand and fine tune each component in isolation

[Patel et al., 2008].

More recently, structured learning is adding its own set of challenges, and implementations of

such learning based programs are not scaling well. Researchers wish to express the interactions

and relationships between output variables either via features in a joint learning framework, via

constraints enforced only at inference-time, or any combination of the two. A combination leads to

the same implementation difficulties as those mentioned above. Furthermore, the initial choice of

how to divide these labors can have far-reaching consequences for an implementation. For instance,

given a jointly trained system with many output variables, it can be quite technically challenging to

re-purpose the system as a pipeline with independently trained components, or vice-versa. It may

even call for a new design starting from scratch, even though the quantities of learned parameters

and their roles at inference-time will not change. We believe these issues can be addressed with a

principled LBP formalism.

1.1 Design Principles

In Chapter 2, we survey several works that have made progress towards the design of an LBP

language. None of them embody all of LBP’s principles, which we will now explicate:

• High-level primitives for feature extraction and inference: An LBP language must abstract the

bookkeeping of feature extraction and inference away from the application programmer. This

includes both feature indexing, primarily a compile/training-time concern, and run/inference-

time generation of constraints in terms of the input data.

• Relational features: Most non-trivial domains are relational in nature; i.e., they consist of

objects that themselves have attributes, but that are also connected to each other via relations.

The simplest example of this is the internet, which contains web pages that are linked to each

other. An LBP language must be capable of representing features based on this link structure

(as well as the attributes).

2



• Infinite feature space [Blum, 1992]: If learning based programs are to be scalable, features and

constraints cannot be static elements of a model. In non-trivial domains, there are simply too

many to name explicitly. Thus, an LBP language must be capable of expressing models in

terms of feature generation functions [Cumby and Roth, 2003] over the data. This means the

quantity of model parameters is not known until data is observed.

• Customizable objective function: Features and constraints are not the only opportunity for the

application programmer to influence the outcome of inference. He should also be capable of

re-weighting the objective function to (for example) emphasize the most important decisions

being made.

• Model composability : An LBP language must provide for the construction of larger models

based on smaller ones. Ideally, the models themselves will be first-class objects of the language.

Most importantly, we need to be able to leverage today the models that were developed and

learned yesterday.

• Inference decomposability : When there are many output variables, joint inference can quickly

become intractable. Developers may wish to organize the computation in a pipeline in which

some variables are computed before, and then act as input for, inference over other vari-

ables. In an LBP language, inference should be decomposable in this way without requiring

a refactorization of the model code.

• Algorithm independence: The code that specifies a model in an LBP language must not assume

that any particular learning or inference algorithms will be employed. Instead, it should simply

establish the shape of the model (i.e., what parameters are involved and what features index

them), and the various algorithms can accept or reject the model as appropriate.

1.2 Learning Based Programming

While algorithmic issues in learning and inference garner the bulk of researchers’ attention, LBP

also brings to light interesting theoretical and practical challenges in the development and run-time

optimization of learning based programs. On the theoretical side, are there significant differences

between popular models in the literature, or can they be described under a common framework?
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Doing so is a prerequisite for algorithm independent composability. To address this question, in

Chapter 3 we develop the Constrained Conditional Model (CCM) [Chang et al., 2008] and demon-

strate that it is general enough to subsume the majority of models described in the literature.

On the practical side, can this framework allow simple, high level specifications of learning

based programs from which efficient code can be generated? To address this question, we first

present Learning Based Java (LBJ) [Rizzolo and Roth, 2007], our first generation LBP language in

Chapter 4. It is the first discriminative modeling language to our knowledge; its learned models

need not represent probability distributions. In addition to abstracting the feature extraction and

indexing process, the language also provides a declarative, First Order Logic (FOL) syntax for

writing constraints grounded in the Java objects that encapsulate the user’s data. This syntax can

then be compiled at run-time into linear inequalities suitable as input for an Integer Linear Program

(ILP) solver. LBJ has already been used to develop several state-of-the-art resources. The LBJ POS

tagger1 reports a competitive 96.6% accuracy on the standard Wall Street Journal corpus. In the

named entity recognizer of [Ratinov and Roth, 2009], non-local features, gazetteers, and Wikipedia

are all incorporated into a system that achieves 90.8 F1 on the CoNLL-2003 dataset, the highest

score we are aware of. The co-reference resolution system of [Bengtson and Roth, 2008] achieves

state-of-the-art performance on the ACE 2004 dataset while employing only a single learned classifier

and a single constraint. Finally, LBJ’s constraint and inference framework was used successfully to

recognize authority in dialogue in [Mayfield and Rosé, 2011].

1.3 Evaluation

LBJ’s success stories are proof that it is useful in certain situations. However, it is important not

to rest on our laurels. Thus, we seek in Chapter 5 to perform a thorough and objective evaluation

of LBJ; a proposition which is easier said than done. After a survey of alternative programming

language evaluation methodologies from the literature, we employ the Cognitive Dimensions of

Notations [Green, 1989, Blackwell and Green, 2000] to elicit constructive criticism from users of

the language via a comprehensive questionnaire. The results of this study highlight important
1 http://cogcomp.cs.illinois.edu/page/software_view/3
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shortcomings of LBJ, including that it is not relational (i.e., structured), and that it hides too many

low-level implementation details that can be crucial for modeling expressivity and scalability.

In addition, we present in Chapter 6 a case study of several learning based programs that

collectively span the set of the design principles outlined in Section 1.1. LBJ implementations of

all of them are possible, but sometimes not without making special accommodations outside of the

language or forcing the issue with unnatural representations. The case studies uncovered situations

in which LBJ’s syntactic sugar could have encoded specifications more succinctly, as well as specific

pieces of syntax that attempted to patch LBJ’s limitations.

Chapters 5 and 6 inspire us to desire more in an LBP language; most importantly, support for

structured models and learning algorithms.

1.4 Structured Learning Based Programming

To fully incorporate structure into an LBP language while simultaneously addressing the concerns of

the evaluation participants, we developed the Constrained Conditional Model Processing language

(CCMP) 2. CCMP is a general purpose programming language in which features, vectors, and

models (i.e. structured collections of learned parameters) are primitive data types and operators

are provided for composing and accessing them. This model composition is completely divorced

from any notion of learning or inference over the model and its parameters. Thus, it is up to the

programmer to decide on the semantics of those learned parameters and to design (or select from a

library) learning and inference algorithms that respect those semantics.

We also present a formal semantics for CCMP designed using the K technique

[Roşu and Şerbănuţă, 2010] in the rewriting logic language Maude [Clavel et al., 2007]. The equa-

tions and rules therein give a precise, logical account of all the computations that take place when

any operator is applied in a CCMP code. Since Maude code is executable, we also get an inter-

preter and debugger of CCMP for free, and thus we have been able to evaluate the capabilities of

the language on several important test cases. CCMP is a robust and flexible solution for structured

learning techniques at both training-time and inference-time.

2See [Rizzolo and Roth, 2010] for an intermediate step between LBJ and CCMP
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Chapter 2

Related Work

Over the past 20 years, several machine learning modeling formalisms have been developed, all for

the specification of probabilistic models. The first such languages were for modeling Bayes nets, a

formalism in which models often enjoy a natural decomposition, but which can be awkward when

causal relationships between variables are hard to justify. More recent languages focus on undirected

models for relational data comprised of repeated structure in which relational features are associated

with shared parameters.

The LBP principles embodied by these approaches are summarized in Table 2.1. As shown in

the table, there is limited support for model composition (collectively), and few formalisms give

the programmer access to the inference objective function. All of these languages act as interfaces

to particular learning and inference algorithms, and typically aim to solve both problems globally.

However, there are often big advantages to composing the model from separately trained components

whose interactions are resolved only at inference-time [Punyakanok et al., 2008]. In particular, the

simpler component models will require fewer training examples to converge, and the computational

complexity of inference can be kept under control [Denis and Baldridge, 2007, Martins et al., 2009].

Finally, although data participates in the definition of each learned function, no existing framework

leverages that data to generate better code.

2.1 Generative Modeling Languages

2.1.1 BUGS

The Bayesian inference Using Gibbs Sampling (BUGS) language [Gilks et al., 1994] is a declarative,

propositional language for specifying the structure of a hybrid generative model (i.e., one whose
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LBP Principle AB PRISM PRM IBAL BLOG Church RMN MLN FACTORIE
High-level primitives X X X X X X
Relational features X X X X X X X X
Infinite feature space X X X X X X X
Customizable objective function X
Model composability X X X
Inference decomposability X
Algorithm independence

Table 2.1: Embodiment of LBP design principles by the languages and formalisms surveyed in
Chapter 2.

random variables may be either discrete or continuous). Backed by a library of Bayesian techniques,

the specified model may involve variables drawn from various types of distributions (e.g. normal,

beta, Dirichlet, Bernoulli, and binomial), and the parameterizations of the distributions can take

a variety of exponential family forms. As the name of the system says, this language acts as an

interface to Gibbs sampling [Casella and George, 1992] for both learning and inference. In addition,

its language is propositional, and it only supports static features.

2.1.2 AutoBayes

AutoBayes [Fischer and Schumann, 2003] picks up where BUGS left off, providing an ambitious

set of tools for processing Bayes nets. From a high level, the two languages look very similar.

However, an AutoBayes source file may also contain the objective function to optimize during

learning, which is usually the likelihood of the data given the parameters. Using a library of pattern

matching schemas, AutoBayes then applies a recursive, symbolic optimization procedure in which

the objective function is decomposed according to independence theorems, and subproblems are

solved analytically when possible. When an analytic solution cannot be found, AutoBayes falls back

on EM, which itself contains a maximization over which this entire recursive procedure proceeds.

The result is an automatically derived algorithm tailored to the user’s network structure. AutoBayes

then generates heavily commented C++, separate documentation explaining the derivations, and

synthetic testing data.

The AutoBayes language is propositional, and it only supports static features. But this should

7



not draw our attention away from what the system achieves as a high-level language. A library

of Bayes net routines cannot optimize the global learning procedure as AutoBayes does without a

symbolic representation of the network. How can that representation be provided other than with

a high-level language?

2.1.3 PRISM

PRISM [Sato and Kameya, 1997, Sato et al., 2005], short for PRogramming In Statistical Modeling,

is a language that defines definite (i.e., Horn) clause logic programs with a special predicate that

signals the presence of a nameable Boolean random variable. This “binary switch” predicate may

only appear in the body of a clause. With the name of the produced Boolean variable being passed

to the predicate as an argument, PRISM’s models are in the infinite attribute domain and can

also accept relational features. However, it is assumed that the parameters will be learned via EM

given only the observed values of head predicates. PRISM does have enough expressivity to model

arbitrary Bayes nets, even if in a somewhat more verbose syntax than we might have hoped for.

The system is implemented as an extension to Prolog, a Turing-complete logic programming

language. The same source code that specifies the model’s structure is then evaluated after learning

with the parameters filled in. Thus, PRISM is a general purpose language whose programs are only

partially specified until data is observed. Indeed, one of our main goals is to emulate and improve

on this philosophy.

2.1.4 Probabilistic Relational Models

Probabilistic Relational Models (PRMs) [Getoor et al., 2000] extend Bayes nets to a relational con-

text involving quantified relations between objects of different classes. To specify a PRM, one

specifies a schema of object classes, their attributes including references to other objects, and de-

pendencies between the attributes. When data is observed, the schema is instantiated into a Bayes

net. Thus, it is very similar to the undirected frameworks discussed in Section 2.2, except for the

following key points: (1) it is less flexible with respect to features, (2) special care must be taken

to ensure that each instantiation is acyclic, and (3) whenever there is a many-to-one mapping from
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class X to class Y and attribute Y.A depends on attributes X.B, these dependencies must be ag-

gregated to keep the size of the conditional probability table constant across instantiations. These

inconveniences are all due to the intended interpretation of the learned parameters as conditional

probabilities, which we consider a very limiting restriction.

2.1.5 IBAL

The Integrated Bayesian Agent Language (IBAL) [Pfeffer, 2007] is a general purpose, functional

programming language with a variety of novel primitives for representing learnable probabilistic

and decision theory models. We focus on its probabilistic modeling capabilities here. In particu-

lar, primitive to the language is a value representing a learnable, parameterized distribution over

other values. This distribution value may appear anywhere the generated values would be allowed.

A program can then be interpreted as a generative story, conveniently specified in a declarative

programming environment. IBAL can also represent undirected models as products of experts via

declarative constraints. With all these capabilities fully integrated into a Turing-complete language,

it can even capture the same types of long-range features as FACTORIE’s imperatively defined fac-

tor graphs (see Section 2.2.3). It does, however, assume a particular style of learning and inference

over statically declared parameters that must represent probabilities.

2.1.6 BLOG

The Bayesian Logic (BLOG) [Milch et al., 2007] language is a first-order language for specifying the

structure of a Bayes net and querying that network given evidence. It is essentially an extension of

PRMs to domains involving uncertainty in the existence or quantity of objects. However, learning

has not been incorporated in the language, and inference is approximate and not guaranteed to

terminate for all model structures.
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2.1.7 Church

The Church language for specifying generative models [Goodman et al., 2008] is essentially Scheme1

with built-in primitives for sampling values from distributions and conditional querying. Similarly

to IBAL, Church expressions represent a distribution over possible return values, except that when

evaluated, a sample from the distribution is returned instead of the distribution itself. Another

feature that sets Church apart is its stochastic memoization facility. At the user’s behest, any

stochastic function can be memoized so that the returned sample is remembered in association with

the function’s arguments. This way, the same generative history can be referenced from different

sections of the code, specifying (for example) the model and a conditional query over it. Learning

is accomplished via conditioning, and MCMC inference is performed.

2.2 Undirected Graphical Modeling Languages

2.2.1 Relational Markov Networks

Relational Markov Networks (RMNs) [Taskar, 2002] incorporate repeated structure in an undirected

graphical model by assuming an exponential form for the factors and associating a single set of

parameters with a repeatedly instantiated relational clique template. The template itself is written

in SQL, and it represents a relational query over domain elements selecting desired attributes to

take part in conjunctive features. The result is a joint distribution whose log is a dot product of

parameters and counts of feature occurrences, just like the discriminatively trained HMM of Collins

[Collins, 2002]. The difference is that an RMN’s scores must be normalized. Approximate inference

can be performed with belief propagation or MCMC.

2.2.2 Markov Logic Networks

Markov Logic Networks (MLNs) [Richardson and Domingos, 2006] are exponential models in which

the features are expressed as First Order Logic (FOL) formulae over a symbolic domain. They are

named as such because the weighted features can be interpreted either as a Markov random field
1Scheme is a dialect of Lisp; see http://groups.csail.mit.edu/mac/projects/scheme
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or as a probabilistic knowledge base. Given constant symbols representing objects, the weighted

features can be thought of as inducing a Markov random field in which the nodes represent ground

predicates, and there is an edge between two nodes iff the corresponding ground predicates appear

in the same grounding of some feature formula. As the weights approach infinity, the formulae

become hard constraints, and the network can be viewed as a knowledge base in the FOL sense.

However, the function of logic in this formalism is primarily for the specification of relational

features. Learning and inference are accomplished via standard exponential model techniques.

Indeed, an FOL feature formula is essentially an extension of, and a more compact syntax for,

the RMN’s relational clique template. The difference is that the features need not be conjunctive.

However, the MLN language does not appear to provide a conditioning operator for disjunction or

negation as in [Cumby and Roth, 2003]. Thus, non-conjunctive features are impractical in large,

otherwise sparse domains such as natural language processing, since an intractable number of these

features will always be active. Furthermore, MLNs do not address model composition and are

designed for use with particular learning and inference algorithms.

2.2.3 FACTORIE

FACTORIE [McCallum et al., 2009] is a library for learning and inference over factor graphs. A

factor graph is a bipartite, undirected graphical model where the two types of nodes represent

random variables and factors of the joint distribution. Factor nodes are connected to all and only

those variable nodes corresponding to the variables they contain. Thus, a factor graph can provide

a more fine-grained illustration of the joint’s factorization than the traditional graph composed of

only random variable nodes.

The FACTORIE library allows exponential form factors and provides a factor template mecha-

nism for specifying repeated structure, just as do RMNs and MLNs. Factor templates can include

arbitrary native code to locate the pertinent random variables. This code acts as a hook into an

appropriately implemented inference algorithm, enabling (effectively) the extraction of features that

are difficult to specify in FOL. Thus, FACTORIE is said to instantiate imperatively defined factor

graphs (IDFs).
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Implemented as a library for Scala2, FACTORIE cannot take advantage of high level information

about the structure of a model to generate more efficient code for the given task. Instead, it is

tailored specifically for use with MCMC in both learning and inference, providing hooks into the

algorithm that the user must implement in accordance with the semantics of his model. Thus, they

sacrifice choice of algorithms and some simplicity of model specification for flexibility within the

MCMC framework. In addition, they once again do not address model composition.

2Scala is a language based on Java mixed with a variety of functional programming concepts; see http://www.scala-
lang.org/
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Chapter 3

The Constrained Conditional Model

In order to address all of LBP’s design principles, we desire a learnable model that supports an

infinite feature space, is composable, and, most importantly, makes no assumptions about the

learning and inference algorithms used and as few as possible about the interpretation of the learned

parameters themselves. If the model satisfies these properties, the remaining LBP principles will be

fulfillable by a programming language adopting it, as we will show in Chapters 4 and 7.

Discriminative models will be of particular concern to us in this thesis, as they are conspicuously

neglected by the formalisms described in Chapter 2. Algorithms such as Winnow [Littlestone, 1988],

Perceptron [Rosenblatt, 1958], and SVM [Burges, 1998] remain popular choices in modern research

because of their efficiency and good performance on real world problems. In this chapter, we show

that a single formalism can capture both these models as well as the probabilistic models described

in Chapter 2 (as used for discriminative purposes), in both theory and practice.

At the highest level of abstraction, a learnable model is a parameterized function fθ : X → Y

that maps from an input space X ≡ Rp of feature values to an output space Y ≡ Rq of labels

conditioned on a vector of parameters θ ∈ Rn. Each dimension of X corresponds to a different

feature; i.e., a property of the data that has been evaluated to a real value. Each dimension of Y

corresponds to a different output variable, which can also be thought of as a property whose value is

determined by fθ. Learning is the process through which θ is selected, and inference is the process

through which fθ is evaluated given input. Although features and output variables have real values

in general, we will tend to focus on problems involving discrete features and output variables. In

these contexts, Boolean values will simply be restricted to the values 0 and 1, and discrete features

or output variables can be encoded with a separate Boolean for each discrete value.

In this Chapter, we first develop the constrained conditional model (CCM) of [Chang et al., 2008]
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in Section 3.1 to the play the role of fθ. The CCM is conditional in that it supports most directly

the modeling of interactions amongst output variables given the input features as opposed to jointly

modeling both input and output. This may seem like a limitation, but it is an advantage in domains

in which there is a strong distinction between input and output; modeling effort is never wasted

on values that are always given. Note also that a fully joint model can be viewed simply as the

special case with no input. Finally, the CCM is constrained in that it contains features governed by

parameters in θ whose values are set by the system designer as opposed to the learning algorithm.

We call these features constraints, and we go to the trouble of distinguishing them from features to

emphasize the idea that handling them separately from the rest of the model can lead to big gains

in efficiency.

After presenting the CCM, we spend the rest of the Chapter discussing its expressivity. We show

that many common models in the literature fall under its umbrella. During the discussion, we keep

an eye out for the design principles we aim to satisfy in a programming language implementation.

3.1 Definition

We submit the constrained conditional model (CCM) of [Chang et al., 2008] as a general, relational,

discriminative modeling framework. A CCM can be represented by two weight vectors w and ρ

standing for θ, a set of feature functions Φ = {φi : X × Y → R}nφi=1, and a set of constraints

C = {cj : X × Y → R}ncj=1. The score for an assignment to the labels y ∈ Y on an input instance

x ∈ X can then be obtained via the objective function

zw,ρ(x,y) =

( nφ∑
i=1

wiφi(x,y)

)
−

 nc∑
j=1

ρjcj(x,y)

 , (3.1)

and inference is framed as an optimization problem computing the highest scoring label assignment:

fw,ρ(x) = argmax
y∈Y

zw,ρ(x,y) (3.2)
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If the features and constraints are non-linear, this problem can be arbitrarily complex. However,

there are also many interesting tractable forms the problem can take. We’ll review several in

this chapter. Most frequently, we’ll restrict ourselves to the case where Y = {0, 1}q. Typically,

this results in φi ∈ N ∪ {0} and cj ∈ {0, 1} as well. In these cases, a CCM can be solved as

an ILP. Although ILP is NP-hard in general, the ability to solve a CCM as an ILP often yields

efficient inference over models involving long range constraints that other modeling formalisms

cannot support [Roth and Yih, 2005].

There are only two differences between the two summations in Equation (3.1) (and between

features and constraints). One is that a feature’s weight wi is set by a learning algorithm, whereas a

constraint’s weight ρj is set by a domain expert. Thus, constraints are a mechanism for incorporating

knowledge into the model. The other is that each cj will be written to express the degree to which

constraint j has been violated. ρj then represents the penalty incurred for a violation. This way,

we can make a constraint hard by setting ρj =∞ without disrupting the distinctions made by the

first summation when constraints are satisfied.

The CCM is very general and subsumes many modeling formalisms. Note that CCMs are not

restricted to any particular learning or inference algorithms. They can also be composed by simply

summing objective functions, regardless of how the argument models were originally learned. Thus,

the designer of the model can tailor the semantics of the features and weights for the task at hand.

As such, many, if not all models developed in the literature fall under its umbrella. For the rest of

this chapter, we will explore these claims in more depth by detailing several popular models in the

CCM framework. Once they’ve been unified under this framework, they’ll become easier to combine

and augment.

3.2 Classical Models of Learning

3.2.1 Linear Threshold Units

Perceptron [Rosenblatt, 1958], Winnow [Littlestone, 1988], and other such Boolean classification

algorithms represent their hypothesis with a weight vector w ∈ Rn whose dimensions correspond
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to features of the input x ∈ Rn. The prediction of the model is then y∗ = I{w · x ≥ 0}, where

I{·} is 1 if the argument is true and 0 otherwise; i.e. the dot product between the weight vector

and the features’ values is compared with a threshold of 0. Thus, we refer to these models as linear

threshold units (LTUs).

To cast this model as a CCM, our features’ values will simply factor in the label y ∈ Y ≡ {0, 1}:

φi(x, y) = y xi (3.3)

There are no constraints. Equations (3.1) and (3.2) then define inference. Since w is fixed and x is

given, so the objective function is linear.

3.2.2 Multi-Class Classifiers

A popular approach to online multi-class classification instantiates for each class t a separate LTU

wt, indexed by the same features of the input x [Carlson et al., 1999, Crammer and Singer, 2003].

The prediction is then simply the class associated with the highest scoring weight vector y∗ =

argmaxt∈T wt · x, where T is the set of all classes.

To cast this model as a CCM, we first create a separate Boolean label yt ∈ {0, 1} for each t ∈ T

along with a single constraint that ensures exactly one of these labels will be active given any input.

Additionally, we duplicate the original features creating separate feature functions for each label

and distribute the corresponding labels into them. These new feature functions take their original

values if and only if the corresponding Boolean label is 1; otherwise they take the value 0. This

arrangement effectively instantiates the aforementioned LTUs.

φt,i(x,y) = yt xi (3.4)

cD(x,y) = I

{ T∑
t

yt 6= 1

}
(3.5)

z(x,y) =

∑
t,i

wt,iφt,i(x,y)

−∞ cD(x,y) (3.6)

In equation (3.6), the objective function z from equation (3.1) is redefined with the new feature
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indexing scheme and single constraint whose penalty is ρ = ∞. Generative models used for multi-

class classification such as naïve Bayes can also be viewed in this light [Roth, 1999].

3.2.3 Hidden Markov Models

The standard in sequential prediction tasks is the Hidden Markov Model (HMM) [Rabiner, 1989].

It is a generative model that incorporates (1) a probability of making each possible emission at step

i and (2) a probability of being in each possible state at step i + 1, both conditioned on the state

at step i. These probabilities are usually organized into emission and transition probability tables,

P (ei|si) and P (si+1|si), respectively, where si ∈ S and ei ∈ E . During inference, the emissions ei

are fixed, the state variables si are our output variables, and our goal is to find the assignment that

maximizes likelihood or, equivalently, log-likelihood:

s∗ = argmax
s

m∏
i=1

P (si|si−1)P (ei|si) (3.7)

= argmax
s

m∑
i=1

log(P (si|si−1)) + log(P (ei|si)) (3.8)

where m is the total number of observed emissions in a given sequence and s0 is a sentinel state

symbol placed at the beginning of every sequence.

Following [Collins, 2002], we can cast equation (3.8) as a CCM by first flattening the log prob-

abilities into our weight vector. Next, we rearrange the equation to factor out the model’s weights,

which are just the individual probabilities in the two tables:

Ir̂,r̂′(r, r
′) = I{r̂ = r ∧ r̂′ = r′} (3.9)

s∗ = argmax
s

S×E∑
ŝ,ê

log(P (ê|ŝ))

(
m∑
i=1

Iŝ,ê(si, ei)

)
+

S×S∑
ŝ,ŝ′

log(P (ŝ|ŝ′))

(
m∑
i=1

Iŝ,ŝ′(si, si−1)

)
(3.10)

It is now clear that our features simply count the number of occurrences of each (state, emission)

pair and each pair of consecutive states in the sequence. Thus, with Boolean feature values xe,i

indicating whether emission e is observed at step i and Boolean labels ys,i indicating whether the
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model is in state s at step i, we can formulate our CCM definition as follows:

φe,s(x,y) =

q∑
i=1

I{xe,i = 1 ∧ ys,i = 1} (3.11)

φs,s′(x,y) =

q∑
i=1

I{ys,i−1 = 1 ∧ ys′,i = 1} (3.12)

z(x,y) =

(E×S∑
e,s

we,sφe,s(x,y)

)
+

S×S∑
s,s′

ws,s′φs,s′(x,y)

 (3.13)

where q = m.

Our objective function (3.13) is now linear in the conjunctive variables I{xe,i = 1 ∧ ys,i = 1}

and I{ys,i−1 = 1 ∧ ys′,i = 1}. As [Collins, 2002] notes, we can then solve equation (3.2) efficiently,

as usual, with the Viterbi algorithm [Rabiner, 1989]. We can even have our learning algorithm set

we,s = log(P (e|s)) and ws,s′ = log(P (s|s′)) if we wish to faithfully recreate an HMM.

3.3 Multivariate Models

In recent years, NLP systems in particular have moved away from models of single output variables

to incorporate many decisions simultaneously. These multivariate models are sometimes also called

structured. Their complexity comes not only from an expanded output space, but also because

the size of that output space at inference-time is, in general, a function of the input. As such, it

makes little sense to invent new learned parameters with each new decision to be made. Such a

model would be utterly unprepared for an input larger than any it had been trained on previously.

Furthermore, depending on the structure being modeled, it may not be clear which learned param-

eters should impact the behavior of which output variables. It makes much more sense to compose

the multivariate model from smaller, more tractably learnable ones in an attempt to detect local

patterns that apply repeatedly across the structure.

Thus, many researchers now use classical models as building blocks for the composition of their

systems. They also use constraints to encode structural relationships between these building blocks

as well as prior knowledge about their global behavior. Finally, they frequently infuse further
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knowledge into the system by controlling the behavior of the inference algorithm. CCMs can

accommodate all of these modeling techniques.

3.3.1 HMMs Revisited

The observant reader will have noticed that the Hidden Markov Models discussed in Section 3.2.3,

while classical, are also multivariate. We do count them as a prime example of a joint, multivariate

model being composed from smaller, more tractably learnable ones. In particular, note how the

number of output variables at inference-time is a function of the number of elements in an input

sequence. Instead of associating each successive element with fresh learnable parameters in the

model, the HMM is composed of smaller models (the transition and emission tables, namely) which

are applied to each pair of consecutive elements in the sequence. These sub-models govern a constant

number of output variables, and training them can be quite efficient since we need not consider full

sequences when doing so. CCMs permit this training strategy but do not require it; a joint learning

algorithm such as [Collins, 2002] can train the same models.

3.3.2 A Discriminative Example

A prime example of the CCM modeling philosophy is the semantic role labeling (SRL) system of

[Punyakanok et al., 2008]. In SRL, the input is a sentence of natural language text. The sentence

must be segmented into non-overlapping phrases representing the arguments of a given verb in the

sentence. These phrases must be identified and classified according to their types. While a solution

to this problem could be learned in a joint probabilistic framework, Punyakanok, et al. composed

it from two independently learned components and hard constraints encoding expert and structural

knowledge enforced only at inference-time. They showed that this composition of simpler models

resulted in more efficient learning requiring less training data as well as a fast inference strategy.

We now discuss the realization of this system as a CCM.

Composition: The Punyakanok, et al. system consisted of two independently learned classifiers.

They learned one LTU to act as an argument candidate filter and one multi-class classifier to predict

argument types. Both classifiers classify a single argument candidate and were trained with input

19



features xF (F for filter) and xT (T for type), respectively. The filter predicts either yes or no

to indicate whether or not the argument candidate should be considered an argument of the given

verb. The type classifier selects a prediction from T ∪ {null} where T is the set of argument types

(e.g. A0, A1, A2, ...), and null indicates the candidate argument is not actually an argument. So,

the CCM will include 2 + |T | Boolean labels, yFa and yTa,t for each argument candidate a and type t,

and constraints to ensure a single yTa,t is active for any given a. If there are a total of A candidate

arguments, these features and constraints can be written as follows:

φFi (x,y) =
A∑
a=1

yFa x
F
i (3.14)

φTt,i(x,y) =
A∑
a=1

yTa,t x
T
i (3.15)

cDa (x,y) = I


T ∪{null}∑

t

yTa,t 6= 1

 (3.16)

Constraints: If the filter predicts no, the type classifier must predict null. We will refer to

this structural constraint as the filter constraint. In addition, there are the structural constraints

ensuring that no two arguments overlap as well as knowledge about type regularities encoded in

constraints such as

• no two arguments associated with any given verb may have type Ak, for k ∈ {0, 1, 2, 3, 4, 5},

and

• if any argument associated with a verb v has reference type R-Ak, then some other argument

associated with v must have the referent type Ak, for k ∈ {0, 1, 2, 3, 4, 5}.

The filter constraint can be written as:

cFa (x,y) = I
{
¬
(
¬yFa ⇒ yTa,null

)}
(3.17)

Constraints that establish a logical relationship between labels can be written to enforce the other

structural and domain specific constraints in our SRL problem as well [Punyakanok et al., 2008].

We will return to a more detailed description of these constraints in Section 6.1.
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Inference: At inference-time, the predictions of both classifiers compete with each other in a pur-

posefully designed constrained optimization framework. The intention here is that the type classifier

should have the last word on which argument candidates will actually be considered arguments. The

role of the filter classifier is to trim away the vast majority of candidates that are easily recognized

as bad choices so that the type classifier sees a more uniform distribution of argument types both

during training and inference. During training, Punyakanok, et al. tuned the filter classifier for high

recall so that a prediction of no would be very trustworthy. Provisions must then also be made at

inference-time to ensure both classifiers have the intended semantics.

First, notice that we have already specified the filter constraint with merely implication and not

double implication. The type classifier is thus unconstrained whenever the filter classifier predicts

yes. We will need additional help, however, to ensure that the filter classifier’s high quality no

predictions propagate to the type classifier. Put another way, we don’t want a strong but ill-advised

prediction from the type classifier to override a highly accurate filter prediction of no. This behavior

can be implemented in a CCM by artificially inflating the filter’s scores by a constant α.

z(x,y) = αwF · ΦF (x,y) + wT · ΦT (x,y)−∞

( A∑
a=1

cFa (x,y) + cDa (x,y)

)
(3.18)

The model to prefer, in general, global assignments that agree with the filter classifier. Note also

that the constraints are all hard ; ie., if any constraint is violated, the score of the assignment is

−∞.

3.3.3 Exponential Family Models

We have already seen an example of an exponential family model expressed as a CCM in Section

3.2.3:

P (s, e) = ez(x,y) (3.19)

where z(x,y) is defined by Equation (3.13). By the same token, a Conditional Random Field

(CRF) [Lafferty et al., 2001] can be expressed as a CCM by simply taking the log of the joint

distribution’s factorization. In the case of sequence tagging, the features are identical to Equations
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(3.11) and (3.12); the associated weights merely need to be renormalized. Plus, when written as

a CCM, long range constraints that are difficult to express in a probabilistic model can become

tractable [Roth and Yih, 2005]. Furthermore, since CRFs are a generalization of Markov networks,

the Markov Logic Network discussed in Section 2.2.2 can also easily be written as a CCM and will

enjoy the same benefits.
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Chapter 4

Learning Based Java

In this chapter, we describe Learning Based Java (LBJ), our first generation modeling language

for describing CCMs. LBJ is not a general purpose programming language; instead, its aim is to

facilitate the implementation of learned classifiers, perhaps constrained, that can be called just

like normal Java methods in an external Java program. LBJ incorporates high level primitives for

feature extraction, learning, and ILP inference under the assumptions that features involve a single

output variable each and constraints are enforced only at inference-time. It supports model compos-

ability and inference decomposability, and admits both discriminative and probabilistic algorithms.

In this chapter, we review the syntax and semantics of the LBJ language (Section 4.2), discuss im-

plementation details (Section 4.3), and present an efficient algorithm for converting arbitrary FOL

sentences into linear inequalities suitable for ILP (Section 4.5).

4.1 Scope

An LBJ program can be thought of as a specification for one or more CCMs of the following

restricted form:

zw,ρ(x,y) =

∑
y∈y

Ty∑
t

σ (wy,t,Φy(x)) yt

−∞ nc∑
j

cj(x,y) (4.1)

σ(w,x) = g(w · x) (4.2)

where, with a slight abuse of notation, the yt variables are grouped within y when they collectively

represent a multi-class classification, yt ∈ {0, 1}, and g is any (usually monotonic) function1. Re-
1We also define ∞ · 0 = 0
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garding the role of σ, the idea is that the dot products associated with each potential value of each

discrete output variable (or some function g of them) can be precomputed, making the objective

function shorter and simpler. The selection of g is LBJ’s only mechanism for providing direct access

to the inference objective function.

In this restricted view of the CCM, Boolean and discrete output variables are still supported,

but all relationships between output variables are specified via constraints, since features are no

longer functions of the output. In addition, all constraints are hard, as indicated by the coefficient

of∞ on the constraint term in Equation (4.1). So, while the HMM described in Section 3.2.3 cannot

be described in LBJ, the multivariate SRL model in Section 3.3.2 can and has been implemented.

4.2 Syntax and Semantics

An LBJ program is a list of declarations that describe classifiers, constraints, and inference problems.

A classifier is a function that takes a single “example” object having any Java type as input and

returns any number of features as output. Learned classifiers are restricted to return a single feature,

but they are also capable of producing a score for each possible value that feature might take.

Constraints are defined in terms of classifiers applied to example objects, and inference problems

collect the scores of classifiers used in constraints to form an objective function. All of these ideas

are described in more detail in this section.

When applied to an LBJ source file, the LBJ compiler generates a Java class corresponding to

each classifier, constraint, and inference problem. The code generated in these classes implements

the semantics of the specified syntactic structures with the help of the LBJ run-time library. The

run-time library contains implementations of inference and learning algorithms as well as frequently

used internal representations and feature extracting classifiers (implemented in LBJ) for NLP tasks.

It is our hope to expand this library to other domains in the future.

4.2.1 Features

Features in LBJ are values produced by classifiers that represent properties of example objects.

They are used under the hood in LBJ to communicate with learning algorithms. The programmer
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has some control over how they are created and used, but they also have several implicit behaviors

that are beyond the programmer’s reach. But before discussing how they are created and used, we

first enumerate their different varieties.

Feature Varieties

First of all, a feature can be either discrete or real. A discrete feature’s value is represented as a

string that comes from an unordered set which may or may not be described in the LBJ source

code, whereas a real feature’s value is represented as a floating point value. Whether a feature is

discrete or real, it can be either primitive, conjunctive, or referring. A primitive feature has a name

and a value. A conjunctive feature has a pointer to a feature on the left and another to a feature

on the right (the order matters). Finally, a referring feature has a name and a pointer to another

feature. Every feature, no matter the variety, is also distinguished by the name of the classifier that

produced it, which is kept internally in a string.

Throughout this thesis, when we discuss the CCM formalism and the implementation of learning

based programs, we often describe features in the context of vector spaces. This is largely because

of our preference for learning and inference algorithms that operate in these spaces. However, LBJ’s

features, being either discrete or real, can be considered more general than that. While learning

algorithms that want vector spaces are free to treat each value of a given discrete feature as a

separate dimension, this behavior is not required by the language. A decision tree learner, for

example, is free to keep the discrete feature in one piece.

Primitive Features A primitive feature’s name is represented as a string, while its value is

either a string if the feature is discrete or a double-precision floating point value if the feature

is real. A discrete primitive feature may also internally identify itself as Boolean. In this case,

its value is restricted to be either "true" or "false". Furthermore, learning algorithms that take

such a feature as input can choose to handle it specially. A vector space algorithm that normally

allocates a separate dimension for each value of a discrete feature may choose to allocate only a

single dimension for a Boolean feature. Primitive features are the only features that can appear as

literals in an LBJ source code.
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Conjunctive Features Conjunctive features do not have names. They are distinguished by the

“child” features to which they refer. The conjunction of two discrete features is itself a discrete

feature which indicates that both of the indicated properties are present in the input. Two real

features may also be combined in a real, conjunctive feature whose value is the product of the child

features’ values. Finally, a discrete and a real feature may be conjuncted into a real, conjunctive

feature whose value is the value of the real child feature. Doing so can be thought of simply adding

extra distinguishing information to the real feature in much the same way as a referring feature.

Conjunctive features come in quite handy to increase the expressivity of a linear classifier. One

may wonder why disjunctive and negated features are not also provided for. In short, the reason

is that we have no way to automatically ensure their correct semantics in the infinite feature space

[Blum, 1992]. For a more thorough discussion of this issue, see [Cumby and Roth, 2003].

Referring Features A referring feature contains a string name and a pointer to a child feature.

The referring feature is discrete if the child feature is discrete or real if the child feature is real. As

mentioned above, a referring feature is created to add extra distinguishing information to an existing

feature. LBJ provides this facility for the same reason that it provides the facility for conjunctive

features: to save memory in case the features in use by some classifier contain redundant information.

This is frequently the case in domains such as NLP that contain a lot of repeated structure. For

example, a classifier may need to know whether a word is capitalized, whether it contains a common

prefix or suffix, whether it is a number, etc., and furthermore, it may need to know this information

about every word in a sentence. When words are similar, these features will be identical, and we

may then want to distinguish them by, e.g., their location in the sentence. The referring feature

serves this purpose.

Using Features

As we will see in Section 4.2.2, a classifier’s declaration indicates either that it returns discrete or

real features. Nothing more specific is ever indicated in the code. Furthermore, while a feature

should be thought of as a value, it can’t be stored in a local variable in a hard-coded classifier or
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constraint as other values can.2 Instead, features can only be created and returned by classifiers.

The exact mechanism for doing so depends on the classifier; see Section 4.2.2 where we revisit this

issue after describing the different varieties of classifiers.

4.2.2 Classifier Declarations

In LBJ, a classifier can be defined with Java code or composed from the definitions of other classifiers

using special operators. As such, the syntax of classifier specification allows the programmer to treat

classifiers as expressions and assign them to names. This section defines the syntax of classifier

specification more precisely, including the syntax of classifiers learned from data. It also details

the behavior of the LBJ compiler when classifiers are specified in terms of training data and when

changes are made to an LBJ source file.

Classifier declarations are used to name classifier expressions. The syntax of a classifier decla-

ration has the following form:

feature-type name (type name ) [cached | cachedin field-access ] <-

classifier-expression

A classifier declaration names a classifier and specifies its input and output types in its header,

which is similar to a Java method header. Either the cached or the cachedin modifier may appear

after the input argument, though they are both optional. The declaration ends with a left arrow

indicating assignment and a classifier expression which is assigned to the named classifier.

Semantically, every named classifier is a static method. In an LBJ source file, references to

classifiers are manipulated and passed to other syntactic constructs, similarly to a functional pro-

gramming language. The LBJ compiler implements this behavior by storing a classifier’s definition

in a static method of a Java class of the same name and providing access to that method through

objects of that class. As we will see, learning classifiers are capable of modifying their definition, and

by the semantics of classifier declarations, these modifications are local to the currently executing

process, but not to any particular object. In other words, when the application continues to train a

learning classifier on-line, the changes are immediately visible through every object of the classifier’s
2Actually, it can, but it’s inconvenient; the programmer would have to manually take it apart to make use of it,

even to merely return it.
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class.

Classifier Return Types

In total, there are 5 possible classifier declaration return types: discrete, discrete%, real, real%,

and mixed%. The return type gives the following two pieces of information: a) whether the features

returned by this classifier will be discrete, real, or could be either (mixed), and b) whether the

classifier is capable of returning multiple features. The percent sign (%) in three of the possible

return types indicates that the classifier is capable of returning multiple features. When this is

the case, we may also refer to the classifier as a feature generator. When it is not, the classifier is

guaranteed to return a single feature. Finally, the classifier expression after the left arrow in the

classifier declaration must have a type that is at least as specific as the return type of the declaration.

By definition, the discrete (real, respectively) type is more specific than the discrete% (real%)

type, and both discrete% and real% are more specific than mixed%.

Caching

The optional cached and cachedin keywords are used to indicate that the result of a non-generator’s

computation will be cached in association with the input object. The cachedin keyword instructs

the classifier to cache its output in the specified field of the input object. For example, if the param-

eter of the classifier is specified as Word w, then w.partOfSpeech may appear as the field-access .

Alternatively, the cached keyword instructs the classifier to store the output values it computes in

a hash table. A cached classifier (using either type of caching) will first check the specified location

to see if a value has already been computed for the given example object. If it has, it is simply

returned. Otherwise, the classifier computes the value and stores it in the location before returning

it.

For learned classifiers that reuse previously predicted values as input features, caching can have

a big impact on performance. Consider, for example, a sequence tagging classifier that uses as

features the previous two predictions it made. Without caching, as the length of the sequence

grows, the number of recursive calls made by this classifier grows like the Fibonacci sequence (i.e.,
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exponentially). LBJ allows the programmer to reduce this sad state of affairs to a linear time

execution with the addition of a single keyword.

In addition, learning classifiers cached with either keyword will not load their (potentially large)

internal representations from disk until necessary (i.e., until an object is encountered whose cache

location is not filled in). Thus, if the programmer has precomputed the predictions of this classifier

as he may want to do when using it to provide features to another learned classifier, no time or

space is wasted in passing this data down the pipeline.

Classifier Expressions

An LBJ classifier expression is one of the following syntactic constructs:

• a classifier name

• a method body (i.e., a list of Java statements in between curly braces)

• a conjunction of two classifier expressions

• a comma separated list of classifier expressions

• an inference invocation expression

• a learning classifier expression

Each of these options is discussed in turn in this section except for the learning classifier expression,

which is deemed important enough for its own sub-subsection (4.2.3). Evaluation of a classifier

expression (done at compile-time) results in an anonymous classifier, similar to a functional pro-

gramming language. Anonymous classifiers can only receive a name in a classifier declaration.

Classifier Names The name of a classifier defined either externally or in the same source file may

appear wherever a classifier expression is expected. If the named classifier’s declaration is found

in the same source file, it may occur anywhere in that source file (in other words, a classifier need

not be defined before it is used). If the named classifier has an external declaration it must either

be fully qualified (e.g., myPackage.myClassifier) or it must be imported by an import declaration
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at the top of the source file. The class file or Java source file containing the implementation of an

imported classifier must exist prior to running the LBJ compiler on the source file that imports it.

Method Bodies A method body is a list of Java statements enclosed in curly braces explicitly

implementing a classifier. When the classifier implemented by the method body returns a single

feature, the familiar return statement is used to provide that feature’s value. At that point, a

primitive feature is implicitly instantiated and returned, and the name of the classifier serves as the

name of the feature. If the feature return type is real, then the return statement’s expression must

evaluate to a double. Otherwise, it can evaluate to anything - even an object - and the resulting

value will be converted to a string. Each method body takes its argument and feature return type

from the header of the classifier declaration it is contained in.

The sense statement is used to instantiate a primitive feature that has been detected while

executing a feature generator. In these contexts, any number of features may be sensed, and they

are all returned in the order in which they were sensed upon completion of the method body.

The syntax of a sense statement is

sense expression : expression ;

The first expression may evaluate to anything. After converting it to a string, the value serves

as the name of the primitive feature. The second expression will be interpreted as the feature’s

value. It must evaluate to a double if the method body’s return type is real%. Otherwise, it can

evaluate to anything and the resulting value will be converted to a string. A sense statement may

also appear with merely a single expression argument. In this case, the expression represents the

feature’s name, and that feature is assumed to be Boolean with a value of true.

Classifier Conjunction A classifier conjunction is written with the double ampersand operator

(&&) in between two classifier expressions. The conjunction of two classifiers that each return a

single feature is a classifier producing a conjunctive feature that points to the features produced by

the conjunction’s operands. When either of the operands is a generator, the result is a classifier

returning all the conjunctive features in the cross product between the sets of features returned by

the operands.
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Composite Generators “Composite generator” is LBJ terminology for a comma separated list

of classifier expressions. When classifier expressions are listed separated by commas, the result is a

feature generator that simply returns all the features returned by each classifier in the list.

Inference Invocations Finally, an inference invocation looks similar to a Java method call and

produces a classifier that obeys the constraints (Section 4.2.4) in an inference problem (Section

4.2.5):

inference-problem-name ( classifier-exp )

The classifier-exp will always be merely a name representing a classifier that participates in the

constraints.

Invoking Classifiers

Under the right circumstances, any classifier may be invoked inside an LBJ method body just as

if it were a method. The syntax of a classifier invocation is simply name (object ), where object

is the object to be classified and name follows the same rules as when a classifier is named in a

classifier expression (see the section on classifier names above). In general, the semantics of such an

invocation are such that the value(s) and not the names of the produced features are returned at

the call site.

More specifically:

• A classifier defined to return exactly one feature may be invoked anywhere within a method

body. If it has feature return type discrete, a String will be returned at the call site.

Otherwise, a double will be returned.

• Feature generators may only be invoked when that invocation is the entire expression on the

right of the colon in a sense statement contained in another feature generator of the same

return type3. In this case, the sense statement will instantiate for each feature returned by the

generator a new referring feature whose name is the string value on the left side of the colon
3Any feature generator may be invoked in this context in a classifier whose feature return type is mixed%.
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and which points to the returned feature. Thus, an entire set of features can be translated to

describe a different context with a single sense statement.

4.2.3 Learning Classifier Expressions

Classifiers defined by data but that act the same as classifiers defined in more traditional ways

are, of course, a central point of focus in learning based programs. They must be easy for the

programmer to specify when he wants abstraction, yet expose enough implementation detail to be

useful to a machine learning expert. In LBJ, learning classifier expressions have the following syntax:

learn [classifier-expression ] // Labeler

using classifier-expression // Feature extractors

[from instance-creation-expression [int ]] // Parser

[with instance-creation-expression ] // Learning algorithm

[prune scope prune-strategy threshold ] // Feature pruning

[cval [int ] split-strategy ] // K-Fold Cross Validation

[normalizedby instance-creation-expression ] // For the objective function

end

The first classifier expression represents a classifier that will provide label features for a supervised

learning algorithm. The classifier expression in the using clause does all the feature extraction on

each object, during both training and evaluation. It will often be a composite generator.

The from Clause

The instance creation expression in the from clause should create an object of a class that implements

the LBJ2.parser.Parser interface in LBJ’s run-time library. This clause is optional. If it appears,

the LBJ compiler will automatically perform training on the learner represented by this learning

classifier expression at compile-time. Whether it appears or not, the programmer may continue

training the learner on-line in the application via methods defined in LBJ2.learn.Learner, also in

the library.

When the from clause appears, the LBJ compiler trains the specified learning classifier at
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compile-time. First, it retrieves objects from the specified parser until it finally returns null.

One at a time, the feature extraction classifier in the using clause is applied to each object, and the

results are sent to the learning algorithm for processing. In addition, since many learning algorithms

perform much better after being given multiple opportunities to learn from each training object, we

also provide an integer addendum to this clause. The integer specifies a number of rounds, or the

number of passes over the training data to be performed by the classifier during training.

The with Clause

The instance creation expression in the with clause should create an object of a class derived from

the LBJ2.learn.Learner class in the library. This clause is also optional. If it appears, the generated

Java class implementing this learning classifier will be derived from the class named in the with

clause. Otherwise, a default learner selected by the system for the declared return type of this

learning classifier will be substituted with default parameter settings.

The prune Clause

When the optional prune clause is present, the classifier employs one of the following heuristics to

prune features from a feature extracted dataset before training begins. First, the number of occur-

rences of each feature encountered during feature extraction is counted internally by the classifier.

Then, if the “prune-strategy” argument is "count", the “threshold” argument will be interpreted as

the minimum quantity of occurrences that a feature must amass lest it be pruned away. Otherwise,

if the “prune-strategy” argument is "percent", the decision to prune a feature will be made relative

the most frequently occurring feature. The “threshold” argument will be interpreted as the mini-

mum fraction of the most frequently occurring feature’s occurrences that a feature must amass lest

it be pruned away. Finally, the “scope” argument can be either "global" or "perClass". When the

classifier is multi-class, this argument controls whether the aforementioned heuristics are carried

out across the entire dataset or within the subset of the data labeled by each possible prediction

value individually. If the classifier is not multi-class, the “scope” argument must be "global".
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The cval Clause

The cval clause enables LBJ’s built-in K-fold cross validation system. K-fold cross validation is a

statistical technique for assessing the performance of a learned classifier. First the user’s training

data is partitioned into K subsets such that a single subset is held aside for testing while the others

are used for training. For each potential testing set, the classifier is trained from scratch on the

remaining partitions, and its testing performance is recorded. After all partitions are processed in

this way, we now have K samples of our classifiers performance on unseen testing data over which

statistics can be taken. LBJ automates this process in order to alleviate the need for the user to

perform his own testing methodologies. The optional split-strategy argument to the cval clause

can be used to specify the method with which LBJ will split the data set into subsets (folds).

The normalizedby Clause

The normalizedby clause specifies a function g for use in Equation (4.2). The LBJ library contains

a set of functions that may be named here; e.g., sigmoid, softmax, and log.

Parameter Tuning

In addition to all of the clauses mentioned above, learning classifier expressions also support some

extra syntactic sugar that utilizes K-fold cross validation to tune parameters’ values. In this context,

the parameters to which we are referring are those specified by the programmer to control how

learning operates as opposed to the learned parameters in a model. These are parameters such as

the number of training rounds, the arguments of the prune clause, and any arguments passed the

the learning algorithm’s constructor in the with clause.

The extra syntax specifies a set of values in between double curly braces (‘{{’ and ‘}}’). Inside

the braces, the programmer may write either a comma separated list of literal values (strings,

integers, doubles, or what-have-you) or a specification of linearly interpolated integers or doubles

between given starting and ending values and separated by a given quantity (e.g., ‘{{ .1 -> .5 :

.1 }}’). When this syntax is present in a learning classifier expression, the LBJ compiler will use

K-fold cross validation as specified by the cval clause to assess the performance of the classifier
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given every combination of parameter values from the cross product of the sets specified with the

new syntax. The parameter assignment that results in the best performance is then used to retrain

the classifier over the entire dataset.

4.2.4 Constraints

LBJ constraints are written as declarative, first order logic (FOL) sentences interspersed within a

pure Java method body. This way, general constraints may be expressed in terms of data whose

exact shape is not known until run-time. In these sentences, classifiers and arbitrary Java expressions

act as FOL functions, the domain of discourse is the set of all Java objects, and there are exactly

two predicates: equality and inequality. These predicates accept any objects as arguments, but

they in fact denote string comparison; Java’s toString() method is invoked to do the conversion.

Also, the usual operators and quantifiers are provided, as well as the atleast and atmost quantifiers,

which are described below. The interpretations of Java expressions, of course, are fixed. With all

this in place, the inference algorithm will search for interpretations of the classifiers that satisfy the

constraints.

Syntactically, an LBJ constraint declaration starts with a header indicating the name of the

constraint and the type of object it takes as input, similar to a method declaration with a single

parameter. The body of the constraint may then contain arbitrary Java code interspersed with

declarative constraint statements. At run-time, when a constraint is invoked, the conjunction of

all constraint statements encountered during its execution is returned as the result. Thus, the

constraint declaration is semantically a method that creates run-time constraints given an object

representing an inference problem (Section 4.2.5) as input.

Each constraint statement contains a single constraint expression which takes one of the following

forms:

• An equality predicate ε1 :: ε2 where εi is an arbitrary Java expression or the application of

an LBJ classifier to an object.

• An inequality predicate ε1 !: ε2 .

• The negation of an LBJ constraint !γ .
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• The conjunction of two LBJ constraints γ1 /\ γ2 .

• The disjunction of two LBJ constraints γ1 \/ γ2 .

• An implication γ1 => γ2 .

• The equivalence of two LBJ constraints γ1 <=> γ2 .

• A universal quantifier forall (ρ in ε) γ where ρ is a formal parameter with type τ and

identifier ι, ε is a Java expression evaluating to a Java Collection containing objects of type

τ , and γ is an arbitrary constraint expression which may be written in terms of ι.

• An existential quantifier exists (ρ in ε) γ .

• An at least quantifier atleast ε1 of (ρ in ε2) γ where ε1 is a Java expression evaluating to

an int and the other parameters play similar roles to those in the universal quantifier.

• An at most quantifier atmost ε1 of (ρ in ε2) γ .

• A constraint invocation @ ν(ε) where ν is the constraint’s name and ε is an arbitrary Java

expression.

The atleast and atmost quantifiers do not add expressivity to FOL. However, an equivalent

Boolean expression involving only the conjunction and disjunction operators will contain
(
m
ε1

)
terms,

where m is the size of the Collection represented by ε2. Fortunately, as we will see in Section 4.5,

these constraints can be translated to a constant number of linear inequalities for ILP inference.

4.2.5 Inference Problems

From an FOL perspective, an LBJ inference problem is a model, specifying the domain of discourse

by providing example objects to the constraints, but lacking interpretations for the classifiers. From

the CCM perspective, an inference problem must fully specify Equation (3.1). To accomplish this,

the programmer specifies an inference problem template in which constraints are applied to a “head”

object. The head object can be thought of as an encapsulation of the inference problem’s domain

of discourse; it must contain (or have references to) all example objects involved. At run-time, LBJ

will instantiate the constraints on the head object, thereby discovering all applications of classifiers

to example objects. The CCM template in Equation (4.1) is extended by including a new y ∈ y

for each unique pair (ϕ, ε) discovered where ϕ is a classifier and ε is an example object. A new
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implicitly defined constraint of the form in Equation (3.5) is also added to the template for each

such pair, along with the explicitly specified constraints, to form our new objective function.

Inference problem templates have the following syntax:

inference name head type name {

[type name method-body ]+

subjectto method-body

with instance-creation-expression

}

The header names the inference problem template and declares the head object. The body then

contains the following three elements. First, it contains a list of “head finder” methods used to

locate the head object given an example object from the argument of a classifier application in

a constraint. Whenever the programmer wishes to apply the inference to produce the constrained

version of a participating classifier, that classifier’s input type must have a head finder method in the

inference body. Second, the subjectto clause is actually a constraint declaration within which all

relevant constraints should be specified or invoked. Finally, the with clause specifies which inference

algorithm to use.

4.3 Feature Extraction

4.3.1 Sparse Representation

In general, LBJ learning classifiers do not assume anything a priori about how many features they

will encounter or what types those features will have. As a result, learning algorithms implemented

for LBJ need to work with sparse representations of feature and weight vectors. As new features

are encountered, a learning algorithm will allocate additional space as appropriate for the internal

representation of its hypothesis.
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4.3.2 Automatic Indexing

For learning algorithms that represent their hypothesis as a weight vector, LBJ internally converts

every encountered feature into an integer index and an associated strength. A strength is just the

weight of a feature in an example. Thus, examples are represented by an array of indexes and an

array of strengths. The learning algorithm records a lexicon mapping features to indexes. This way,

the weight vector can also be implemented as an array, making dot products as efficient as possible.

This automatic feature indexing is most beneficial when the algorithm requires multiple passes over

the data, as many algorithms do.

In domains such as NLP that require the infinite feature space, the lexicon can become very

large very quickly. Thus, efficiency in both time and space is an important issue. Furthermore, the

integer indexes returned by the lexicon must be packed tightly so that the classifiers’ weight vectors

are only as big as they need to be. LBJ’s lexicon utilizes its feature representation to conserve

space and time. Adding a conjunctive or referring feature to the lexicon involves looking up and

potentially adding their children as a by-product. All the while, we must be careful: child features

added to the lexicon indirectly in this way should not be assigned an index unless also added directly

as a parent feature at some other time.

This is all further complicated by the pruning process which could remove any feature from the

entire dataset. When this happens, we’d like to free up the index associated with the feature in the

lexicon to save space in classifiers’ weight vectors as well. This can be a big help if many features are

pruned. However, the programmer may also benefit from the option to cache features (and counts)

pruned from both the lexicon and the dataset on disk in case he wants to change the parameters of

the prune clause in the learning classifier expression. That would save the time of re-extracting the

features. Thus, the learning classifier’s pruning operation is implemented to rearrange the storage

of features in the lexicon and dataset in such a way that it saves space and is prepared for the

programmer’s next experiment.

When the lexicon is written to disk, space and time is also conserved by writing merely inte-

gers that point to referring features instead of the features themselves. The models and lexicons

themselves are only read from disk when absolutely necessary, and during training, the lexicon is
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expunged from memory after feature extraction completes. All of this is completely transparent to

the programmer who simply passes arbitrary Java objects to his classifiers.

4.4 Development Cycle

An LBJ source file also functions as a makefile in the sense that the operations it performs (e.g.,

code generation, feature extraction, learning, etc.) are only executed if they are deemed necessary

to bring the compiled system up to date with the source code. To implement this behavior, the

generated source code of every classifier, constraint, and inference problem stores in a comment a

compressed representation of its LBJ specification. When the compiler runs again, this representa-

tion is compared against the current version of the code. This tells the compiler which declarations

have been explicitly revised.

Next, we implemented a data-flow analysis [Kildall, 1973] to determine which additional classi-

fiers, constraints, and inference problems have been affected by the detected revisions. To do this,

we first create a control-flow graph whose nodes are declarations and whose directed edges represent

dependencies between the declared elements. Edges are created when when a classifier or constraint

is invoked by another classifier or constraint in a method body and when a classifier is defined as a

combination of other classifiers via a classifier expression. The data-flow analysis then propagates

the information indicating which classifiers have been revised along the edges in the graph so that

each declaration may respond appropriately.

In addition, each learning classifier expression is represented by several nodes in this graph; one

for each of the operations it may perform. When another classifier points to a learning classifier

expression, it actually points to its feature extraction node. The feature extraction node points to

the pruning node, which points to the training node, which points finally to the parameter tuning

node. When the learning classifier expression points to another declaration in the graph, it is in

fact the parameter tuning that does the pointing.

All of this is done to streamline the programmer’s development cycle. If there are several

learned classifiers in an LBJ source file and a feature extraction classifier is changed, only those

learned classifiers that depend on it will be retrained. If the change made to a learning classifier
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expression is merely a new value for a learning algorithm parameter, we can skip past the expensive

feature extraction and pruning operations and head straight for training. In fact, feature extraction

can be skipped even when changing the pruning parameters, since we went to the trouble of caching

pruned features on disk as described in the previous section.

4.5 Inference with Integer Linear Programming

Once constraints are specified, they can serve as input to a variety of optimization algorithms,

frequently based on search; e.g. beam search and A∗ search. An alternative to these techniques

that is increasingly popular in the literature is ILP. This popularity comes despite a constraint

representation, the linear inequality, that is non-intuitive and tricky to encode knowledge in. LBJ

offers a practical solution by translating the more intuitively represented FOL constraints to linear

inequalities automatically at run-time.

First, the constraint specified in the subjectto clause of the inference problem becomes instanti-

ated by the head object. It is then propositionalized, meaning that all quantifiers are “unrolled” into

flat, propositional sentences. From there, the conversion to linear inequalities could be accomplished

naïvely in a conceptually simple way by first converting the propositionalized FOL sentence to con-

junctive normal form (CNF) and then generating a single linear inequality of the form
∑

i bi ≥ 1 for

each disjunctive clause in the CNF. Since an ILP must satisfy all its linear inequalities, the entire

CNF will be satisfied.

Unfortunately, conversion to CNF is NP-hard, and the reason is that it may produce an ex-

ponential number of clauses in the resulting form. So instead of converting to CNF, we present

here an algorithm that translates the original form directly while creating auxiliary ILP variables

along the way that are constrained to represent the values of subexpressions. The algorithm

is based on a well-known idea from the SAT-solving community [Plaisted and Greenbaum, 1986,

Thiffault et al., 2004].
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4.5.1 Propositionalization

When propositionalizing the constraint, there are a few issues to consider. First, the atleast ε1 of

(ρ in ε2) and atmost ε1 of (ρ in ε2) quantifiers are given the propositional analogs atleast m of

β and atmost m of β, where m is an integer and β is a list of propositional Boolean expressions.

The only alternative would be to generate a Boolean expression involving only conjunction and

disjunction of size potentially exponential in the size of the original sentence.

Second, we consider the equality and inequality predicates. Their arguments are arbitrary Java

expressions and applications of classifiers to arbitrary Java expressions. Once instantiated, each

argument becomes either a string or a classifier application (ϕ, ε) where ϕ is a classifier and ε is

an example object. The comparison of two strings propositionalizes to a constant. The comparison

of a classifier application and a string t becomes a Boolean propositional variable b(ϕ,ε)t . Note

that if t 6∈ T where T is the range of the classifier, we can immediately replace b(ϕ,ε)t with false.

Finally, the comparison of two classifier applications becomes an expression of the following form:∨
t∈T1∩T2 b

(ϕ1,ε1)
t ∧ b(ϕ2,ε2)

t . Here, the propositionalization process benefits from knowledge of the

ranges of the two classifiers; only those classes t shared by their ranges need be included in this

expression.

Finally, we must consider the form that our final propositionalized constraint will take. Mo-

tivated by the algorithm described in Section 4.5.2, we simplify our propositionalized constraint

representation in the following ways. Equivalences and implications are expanded. Conjunctions

containing conjunctive terms are recursively flattened into an n-ary conjunction representation. A

similar flattening is applied to disjunctions. Negation operators are moved inside of connective

expressions using DeMorgan’s law until the only negation operators left are applied directly to

propositional variables. Other obvious simplifications, such as b ∧ true ≡ b are also applied.

4.5.2 Generating Linear Inequalities

The algorithm that generates linear equalities is given in Figure 4.1. It is a recursive algorithm

that traverses the syntax tree of a propositional constraint expression looking for conjunctions,

disjunctions, atleast, and atmost expressions that contain only literals (i.e., a propositional variable

41



that may or may not be negated). These are the base cases of the recursion, and each one corresponds

to either one or two linear inequalities depending on whether it represents a top or lower level

constraint (defined below), respectively. If there are λ literals and µ Boolean operators in the input

constraint, the running time of the algorithm is O(λ+ µ).

First, consider the form of the simplified, propositional constraint. The top of its syntax tree is

a conjunction. Its children, the top level constraints, are all either literals, disjunctions, atleast, or

atmost expressions. Literals at this top level are translated to linear constraints trivially. Disjunc-

tions, atleast, and atmost expressions at the top level can also be directly translated to a single

linear inequality.

At lower levels of the constraint’s syntax tree, our base case expressions have different semantics

than they did at the top level. They no longer describe properties of the variables that must be

enforced at all times; instead, they describe some property of the variables that the parent expression

is taking into consideration. For a positive literal, this property is the value of the propositional

variable itself. For a negative literal, it’s the opposite of the variable’s value. In these cases,

TranslateToILP returns an ILP literal (either y or 1 − y, where y ∈ {0, 1} is an ILP variable)

for use in generating inequalities for the parent expression. For all other base case expressions,

TranslateToILP creates a new ILP variable q ∈ {0, 1} to represent the input subexpression’s

value. Two linear inequalities constrain q to take the value 1 if and only if the subexpression it

represents is true with respect to its children. TranslateToILP then returns q so that the parent

expression can substitute q for this subexpression.

When a conjunction, disjunction, atleast m, or atmost m expression β of literals appears as

a subexpression, the new ILP variable q is defined as in Equations (4.3), (4.4), (4.5), and (4.6),

respectively. In these inequalities, L is the set of ILP literals representing the subexpressions of

the expression we are translating, and m is a constant. The inequality on the left of each group

enforces a constraint of the form q = 1 ⇒ β. It does not impose any restriction on the variables in

L when q = 0. Similarly, the inequality on the right enforces a constraint of the form q = 0 ⇒ ¬β

and does not impose any restriction on the variables in L when q = 1. Thus, with both inequalities

enforced by an ILP solver, we have q = 1 ⇔ β.
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4.6 Efficiency Improvements

In general, integer linear programming is NP-hard. There is, however, a well known class of ILP

problems for which efficient linear program solvers will yield an integer solution. In this class of ILP

problems in which the constraints are writtenAx ≤ b, the constraint matrixA is totally unimodular.

A totally unimodular matrix is one in which the determinant of every square sub-matrix is either -1,

0, or 1. When the constraint matrix is totally unimodular and b is integral, the solution to the linear

programming (LP) relaxation of this ILP problem is also integral [Hoffman and Kruskal, 1956].

From the definition of total unimodularity, it follows that all entries of a totally unimodular

matrix must be -1, 0, or 1. Thus, a CCM with constraints involving lower level subexpressions

will cause TranslateToILP to output an ILP constraint matrix that is not totally unimodular.

This is a serious limitation. However, high level information about the CCM can help mitigate the

situation. In particular, consider the case that the set of all arguments to a disjunction is {yν(o)=si},

where ν is a classifier applied to object o, and the si are strings. This can happen when there is

some interesting subset of values in the range of ν.4 Since we know that exactly one value in the

range of ν must be selected, the disjunction can be treated in exactly the same fashion as a single

ILP literal, regardless of level or parent expression. After all,
∑

i yν(o)=si ∈ {0, 1}.

This idea is most important at the top level. For example, consider a top level implication

(
∨
i ν(o) = si) ⇒ b ≡ ¬ (

∨
i ν(o) = si) ∨ b. Normally, the negation would be distributed through

4A disjunction of this form including all values in the range of ν is trivially true.
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the disjunction via DeMorgan’s law creating a lower level conjunction. The inequalities (4.3) would

then leave us with a non-totally-unimodular constraint matrix. However, because of our high level

knowledge about these variables, the implication can be written using only the top level disjunction

inequality: yb + 1−
∑

i yν(o)=si ≥ 1.

Now imagine we’re doing first order sequence classification with LBJ, and we’ve trained a clas-

sifier that takes an emission from the sequence as input and outputs a label l ∈ S × S representing

both the previous and current states, where S is the state space. This classifier will be applied

to every emission in an input sequence, making predictions of the form yi,s′,s for every index i,

where s is the predicted state at index i and s′ is the predicted state at index i − 1. These pre-

dictions must be constrained to ensure they are coherent. We must add a constraint of the form∨
s′∈S yi−1,s′,s ⇒

∨
ŝ∈S yi,s,ŝ for each state s. Using the knowledge that both disjunctions in this

constraint can be treated as ILP literals, our translation to inequalities will yield the efficiently

solvable, totally unimodular constraint matrix given in [Roth and Yih, 2005].

4.7 Discussion

Learning Based Java already boasts several success stories. The LBJ POS tagger reports a compet-

itive 96.6% accuracy on the standard Wall Street Journal corpus. In the named entity recognizer of

[Ratinov and Roth, 2009], non-local features, gazetteers, and Wikipedia are all incorporated into a

system that achieves 90.8 F1 on the CoNLL-2003 dataset, the highest score we are aware of. The

co-reference resolution system of [Bengtson and Roth, 2008] achieves state-of-the-art performance

on the ACE 2004 dataset while employing only a single learned classifier and a single constraint.

The semantic role labeling system of [Punyakanok et al., 2008] which includes multiple classifiers

and constraints has been re-implemented in LBJ, and this new implementation is just as fast and

performs just as well. Finally, the constraint and inference framework was used successfully to

recognize authority in dialogue in [Mayfield and Rosé, 2011].

While we believe that LBJ makes many tasks in common learning based programs easier, there

is also cause for concern. The original motivation behind the design of Learning Based Java was

the common experience of many machine learning researchers that many ML techniques, while
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conceptually simple, often take a large engineering effort to implement. We were inspired by the

idea that we could bring ML to the masses who would use it largely as a black box to help them

implement whatever function they didn’t know how to implement themselves. However, as designed,

LBJ may tend to abstract away too many important details of a learning based program.

Our first cause for concern came from the observation that classifiers in LBJ represent only

a single output variable in an inference problem, and as such, notwithstanding the discussion in

Section 4.6, simple models such as a first order HMM would be decidedly inconvenient to specify.

Most importantly, the relationships between output variables in the HMM inference problem are

conceptually implicit, and are most efficiently enforced by hard coding them as an implementation

of the Viterbi algorithm. In LBJ, there would be two options. First, the programmer employs a

general purpose inference algorithm and manually implements the constraints necessary to create

a sequence prediction. Second, a Viterbi implementation conforming to LBJ’s general purpose

inference interface is provided in the library along with a set of provisos that must be observed

in the programmer’s code in order to make it work. Neither option is desirable. A programming

language should assist the programmer in thinking about solutions as he prefers to think about

them rather than demanding a particular formula.

Another key concern was that researchers of machine learning turned out to be our main audi-

ence, and they tend to want complete access to and control over a learned model. However, LBJ

forces a model to be specified in association with a particular learning algorithm. Thus, if a re-

searcher wishes to learn and evaluate his model with three different learning algorithms, he is forced

to make three copies of his learning classifier expression changing only the with clause in each. This

is again an undesirable state of affairs. Copying and pasting of code is generally frowned on in

practice, so a language that leaves one with no alternatives probably has room for improvement.
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TranslateToILP(constraint, level)

if constraint is a literal containing propositional variable b

if ILP variable yb ∈ {0, 1} does not exist, create it
if level = top

if constraint contains negation, output yb = 0

else, output yb = 1

else
if constraint contains negation, return 1− yb
else, return yb

else
if constraint is a conjunction and level = top

for each child β of constraint

TranslateToILP(β, lower)

else
let L ← ∅ be a set of ILP literals
for each child β of constraint

L ← L ∪ { TranslateToILP(β, lower) }
create new ILP variable qconstraint ∈ {0, 1}
if constraint is a conjunction

output equations (4.3)
else if constraint is a disjunction

if level = top, output
∑

l∈L l ≥ 1

else, output equations (4.4)
else if constraint is an atleast m

if level = top, output
∑

l∈L l ≥ m
else, output equations (4.5)

else if constraint is an atmost m

if level = top, output
∑

l∈L l ≤ m
else, output equations (4.6)

return qconstraint

Figure 4.1: Algorithm for generating linear inequality constraints from a propositional logic repre-
sentation. TranslateToILP takes a propositional constraint and level ∈ {top, lower} as input.
It then outputs linear inequalities and returns ILP literals for use in parent expressions.
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Chapter 5

Evaluation

How can we tell that a programming language is designed well, or that one programming language

has a better design than another? This is a complex, multi-faceted question for which quantitative

answers are nearly impossible. One can certainly count semicolons or non-commented lines of some

selected example codes, but these measures hardly give an accurate portrayal of the effort expended

by the programmer, the quality of the resulting software, or whether any conclusions drawn truly

generalize. A code written in many lines may have taken less time to write, may be easier to read

and maintain, and the program it implements may be more robust and even more efficient.

Thus, we are often left with qualitative analyses that attempt to identify and characterize the

most salient aspects of the programming language. A variety of approaches have been employed,

including case studies which attempt to assess the success of a single programming language by

studying specific codes written in that language, direct comparisons between programming languages

usually also in the context of specific codes, and user studies in which the experience of multiple

users of the language is characterized. In this chapter, we first give in Section 5.1 a brief survey of

these methods, with a particular focus on the Cognitive Dimensions of Notations (CDs). We then

present in Section 5.2 the results of our evaluation of LBJ in the form of a CD questionnaire filled

out by several users who applied LBJ to a variety of different tasks.

5.1 Survey

Several different kinds of qualitative evaluation strategy have been proposed in the literature. Many

authors are concerned primarily with criteria for selecting a teaching language for first-year computer

science students, and so they place high weight on elegant abstractions and a low bar for entry
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(e.g., [Chandra and Chandra, 2005], [Gupta, 2004], [Hadjerrouit, 1998], [Parker et al., 2006], and

[Mannila and de Raadt, 2006]). Others select a specific language and consider the inherent merits of

its design via case studies [Thies and Amarasinghe, 2010, Schmager et al., 2010]. There is also a lot

of literature whose purpose is to make direct comparisons between specific languages, also usually in

the context of specific programming tasks [Chandra and Chandra, 2005, Holtz and Rasdorf, 1988,

Shaw et al., 1981]. We will review a few of these approaches in this section.

We then take a more detailed look at one evaluation strategy in particular; namely, the Cognitive

Dimensions of Notations [Green, 1989, Roast and Siddiqi, 1996] in Section 5.1.3. This approach to

programming language evaluation enlists users of the language to fill out a public domain question-

naire which has been developed and extended over many years by several different authors to be as

general and comprehensive as possible. We use this approach to evaluate LBJ in Section 5.2.

5.1.1 Case Studies

A case study in the style of [Thies and Amarasinghe, 2010] can give insight into the coverage of a

general purpose programming language by examining its behavior in a wide variety of applications.

These case studies should be designed to showcase the novel features of the language and illustrate

as many of its strengths and weaknesses as possible. Generalization of the arguments made therein

is intended to be implied by sheer volume and diversity the cases. Also, the more programmers

contribute cases to the study, the better. This way, the success of the language in enabling high

productivity is not entirely attributed to the language designer’s intimate knowledge of his own

language.

Another recently proposed methodology for assessing the coverage of a language is to use design

patterns as a proxy for the accumulated knowledge of best practices in software engineering over

the years (especially in object-oriented programming languages). A design pattern is an abstract

solution for a commonly arising design problem in software engineering [Gamma et al., 1995]. The

reasoning is that if a programming language makes easy the instantiation of most or all of the

23 design patterns proposed in [Gamma et al., 1995], there is a good chance that its ease of use

will extend to many other contexts. Specifically, [Schmager et al., 2010] study the programming
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language Go, designed at Google, by implementing all 23 design patterns as well as porting the

“pattern dense” drawing software HotDraw into Go. Their conclusions were essentially that Go

is different, but not necessarily easier to use than other object oriented languages with which the

authors have experience.

5.1.2 Direct Comparisons Between Languages

There have also been many studies done to compare the advantages and disadvantages of program-

ming languages with respect to each other. [Chandra and Chandra, 2005] do a comparison between

Java and C# from the perspective of first-year programming courses. They take a close look at

operators and how simple object-oriented design principles manifest themselves in each language. In

the end, they recommend C# for teaching new computer science students because it “seems easier.”

[Shaw et al., 1981] is an extensive work that also compares four languages: FORTRAN, Cobol,

Jovial, and Ironman, a proposal for a language that hadn’t yet been developed. They boil each

language down to a “core” set of primitives which are regarded as comprising a programmer’s “mental

set” of language tools used to build programs. Then a distinction is drawn between “programming

in the small,” in which they consider the day-to-day concerns of programmers using primitives of

the language to build modules whose behaviors will be considered atomic, and “programming in the

large,” in which modules designed by several different programmers evolve over years of maintenance

and are used to compose larger and larger modules. The effect of the programmer’s mental set in

each language on these different programming contexts is considered. They conclude that none of

the languages are ideal, but FORTRAN is the clear loser.

Finally, [Holtz and Rasdorf, 1988] compares FORTRAN, C, Pascal, and Modula-2 for their suit-

ability in different software engineering contexts. In particular, they attempt to assess each lan-

guage’s respective capacity for numerical computation and organizing data; two criteria which they

deemed especially important for modern programming tasks. In the end, they conclude that a

specific, flat recommendation would be impractical; instead, they offer guidelines for selecting a

programming language based on consideration of a given software engineering task. In this author’s

opinion, these conclusions sound the most reasonable.
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A Visibility & Juxtaposability The ability to view/find one or more components easily.
B Viscosity Resistance to change.
C Diffuseness Wordiness; lack of conciseness.
D Hard Mental Operations Complexity in planning (part of) a solution.
E Error Proneness Mistakes are easy to make.
F Closeness of Mapping Notation matches well that which is being described.
G Role Expressiveness Easy to determine the function of each component.
H Hidden Dependencies A change to one component affects others in non-obvious

ways.
I Progressive Evaluation Ability to test incomplete specifications.
J Provisionality Ability to be imprecise when it is unclear how to proceed.
K Premature Commitment Being forced to guess (or else do extra work) in order to

proceed.
L Consistency Similar semantics are expressed using similar syntax.
M Secondary Notation Notation that enhances readability but does not carry

semantics.
N Abstraction Management Ability to change the notation in a user-defined way.

Table 5.1: Summaries of Cognitive Dimensions in the order they appear in Section A.4.

5.1.3 The Cognitive Dimensions of Notations

Another qualitative evaluation strategy consists of enlisting users of the programming language to fill

out a questionnaire based on the Cognitive Dimensions of Notations [Green, 1989]

[Roast and Siddiqi, 1996], about which a large body of work has been written.1 Most notably, Mi-

crosoft has used this framework to evaluate several APIs and languages including C# [Clarke, 2001].

The cognitive dimensions were originally conceived to articulate the concerns of visual programming

language users along “dimensions” such as closeness of mapping, abstraction management, hidden

dependencies, and viscosity. Since then, they have inspired questionnaires for language users (e.g.

[Blackwell and Green, 2000]) which amounts to a qualitative user study. However, it is easier to

administer, since participants need not be present in a controlled environment while filling it out.

One of the most attractive aspects of the particular questionnaire approach which began with

[Blackwell and Green, 2000] is that it has been developed and extended by several authors over many

years to be as general and comprehensive as possible. The researcher applying the questionnaire to

evaluate his own language does not modify it in any way before presenting it to the participants,
1http://www.cl.cam.ac.uk/∼afb21/CognitiveDimensions/CDbibliography.html
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thereby inspiring a sense of objectivity which some other approaches lacked.

As is evident in Appendix A, questions in the questionnaire are grouped according to the CD they

are designed to investigate. However, while the participants can see the grouping of the questions,

they are not given the names of the CDs. Table 5.1 gives the complete list of CD names with brief

descriptions in the order they appear in Section A.4. The questionnaire also presents a section

O which does not correspond to any particular CD; these questions merely ask the participant if

he/she believes the questionnaire overlooked something important.

Terms that appear frequently in descriptions of CDs (and the questions) include “notation,”

“component,” and “sub-device.” In our particular case, the notation is the LBJ language itself.

A component of the language might be a particular operator or syntactic structure. Finally, the

constraint syntax could be considered a sub-device, since its syntax is markedly different from the

rest of the language. However, these terms are open for interpretation by the participants, and their

varying interpretations must be accounted for.

5.2 Evaluation of LBJ

We chose the Cognitive Dimensions of Notations questionnaire approach to evaluate the success of

LBJ as an LBP implementation. In the end, this evaluation technique is still merely qualitative

and does not lend itself towards comparison with other languages, but we believe it makes possible

a less biased evaluation than other methods, primarily because it forces the administrator of the

questionnaire to ask revealing questions.

5.2.1 Participants

We presented the questionnaire whose full text is reproduced in Appendix A to six participants.

They were instructed to fill it out under the assumption that the word “notation” generally referred

to LBJ and that they should simply skip questions they believed did not apply to LBJ. All other

instructions were provided in the questionnaire itself. Every participant filled out the questionnaire

without being supervised by the administrator in any way.

Four of our six participants came from a Machine Learning and Natural Language Processing
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Participant Expertise LBJ Experience
1 ML/NLP 2 years
2 ML/NLP 2 years
3 NLP/ML 1 year
4 NLP/ML 1 year
5 CL 2 years
6 CL 3 years

Table 5.2: The participants in our CD questionnaire are all experienced LBJ users.

background, and the last two came from Computational Linguistics. In Table 5.2, we list “ML” and

“NLP” in different orders for certain participants to emphasize the fact that the first two tended

to be more interested in advanced ML techniques, while the second two merely required simple

multi-class classifiers to do NLP. Unfortunately, only participant 2 has any experience with the

constraint and inference syntaxes in the language. The CL participants also tended to require only

simple multi-class classifiers.

All of them identified themselves as having a mid-range expertise with LBJ (modestly, perhaps),

and all of them understood that the main purpose of LBJ codes is to specify functions that can

learn their representation from data. To be sure, six participants is not a very large sample size,

however as we can see in Table 5.2, every participant has at least a year of experience with the

system. As a result, they were able to give many useful criticisms and comments.

5.2.2 Results

Just as the questionnaire was grouped according to CD, so do we organize our report on the results.

We omit discussions of the Visibility and Secondary Notation CDs, however, since the participants

essentially considered these concerns to be non-issues or not applicable to LBJ. The major theme in

these results is that the two users interested in advanced ML techniques had several serious issues

with the language, while the others were happy to be able to treat ML as a black box.
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LBJ’s Successes

LBJ was viewed favorably almost universally along the following dimensions: Closeness of Mapping,

Role Expressiveness, Progressive Evaluation, Provisionality, Consistency, and Abstraction Manage-

ment. This shows firstly that the participants felt LBJ did a good job of denoting that which it

was intended to denote and making its various functionalities clear to the user. It was regarded as

easy to sketch out ideas in the language before they were fully formed and to evaluate a system at

various stages in its development before it was completely specified. Furthermore, the syntax was

fairly consistent, and the language was effective in enabling the definition of abstractions to make

further coding easier.

The only exceptions to these rules were as follows. Participant 3 was not sure why the new

type names discrete and real were invented when perfectly suitable Java type names were already

available. This participant also did not see the purpose of the assignment operator (<-). In addition,

participant 1 expressed that other people’s LBJ code was not always easy to read, and participant

2 identified inconsistencies in the semantics of the various forms of the sense statement.

Criticisms of LBJ

Criticisms of LBJ were made along the following dimensions, and almost always by the advanced

ML users.

Viscosity: The advanced ML users expressed dissatisfaction with LBJ’s lack of exposure of the

inner workings of learning and inference algorithms. Workarounds could usually be devised, but this

resulted in a rather viscous system architecture that could be quite difficult to change. Nevertheless,

they did also identify particular types of modifications that fit into LBJ’s preconceived notion of

how classifiers work, and they considered these modifications to be quite easy. The rest of the

participants agreed.

Diffuseness: Once again, it was an advanced ML user who was most unhappy with the expres-

sivity of language primitives. For example, it takes quite a lot of coding to initialize an LTU with a

given weight vector. In fact, this coding cannot even take place inside the LBJ source file; it must
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happen directly in the Java application. Nevertheless, this must be counted as a deficiency of LBJ,

since it purports to make learning classifiers easy.

Hard Mental Operations: Participant 2 noted that a lot of planning was required in order to

make his large systems scale well. Technical details such as the precise representations of models

and lexicons were not as accessible as might have been desired, leading to a lot of workarounds.

Error Proneness: The first three participants each noted some simple, usually syntactic mistakes

that are easy to make, but that would probably be easy to catch in an IDE. The most serious such

complaint was that discrete classifiers are too lenient as to the values that can be returned in their

features. In particular, they accept even numerical values, and when the programmer’s intention is

to return real valued features, this results in very non-intuitive behavior that is hard to diagnose.

Thankfully, this particular issue can be fixed with some more restrictive type checking in the LBJ

compiler.

Hidden Dependencies: Participant 2 notes that while LBJ’s “Makefile behavior” (see Section

4.4) can be useful, it does not take into account Java codes on which the LBJ source file depends.

As a result, when a change is made on only the Java side, LBJ will not re-learn affected learning

classifiers. This can lead to mysterious behavior that is hard to diagnose and to the program-

mer adopting a development cycle in which learning classifiers are retrained from scratch at every

iteration; the latter defeats the purpose of the Makefile behavior.

Premature Commitment: Participant 2 noted that the language forces the programmer to

commit to the limited CCM representation it supports, which doesn’t always preclude structured

learning functionality, but certainly makes a lot of preparation necessary in those cases. In addition,

extra preparations are also necessary when providing the connection between a learning classifier

and training data via the from clause.
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5.2.3 Take Away Messages

Several of our participants had few criticisms of LBJ, if any. These learning based program designers

needed simple multi-class classifiers, and they were not interested in managing low-level details.

From their perspective, it seems LBJ suited their purposes well. We count these positive data

points as signs of encouragement in the same vein as the success stories of real-world LBJ systems

in Section 4.7.

However, it is also crucial that the shortcomings brought to light in this evaluation be addressed

for the LBP paradigm to truly make an impact. In particular, future LBP languages should:

• provide explicit support for structured models and learning algorithms; i.e., support fully the

CCM and

• increase access to all details of a model’s training and evaluation, including learned parameters,

lexicons, and algorithms, while maintaining as much abstraction as possible.

Our next generation LBP language, the Constrained Conditional Model Processing language de-

scribed in Chapter 7 is designed to address these concerns.
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Chapter 6

Case Studies

In this chapter, we’ll take a closer look at some real-world examples of LBJ code while highlighting

both what LBJ does well as well as the criticisms brought to light in Chapter 5. First, in Section

6.1, we revisit the Semantic Role Labeling system of [Punyakanok et al., 2008] described in Section

3.3.2. Its design fits LBJ’s model (see Equations (4.1) and (4.2) in Section 4.1) quite neatly, largely

because it was one of the inspirations for LBJ’s design. Next, in Section 6.2, we take a close look

at some Coreference Resolution systems from the literature. Some of these systems were designed

with an ILP inference engine but without the use of LBJ. We’ll see how LBJ could have made

their constraint design more intuitive. Finally, in Section 6.3, we discuss the implementation of the

Illinois POS tagger. To the NLP savvy reader, this likely sounds like the least exciting case, but

do not underestimate it. The POS tagging task turns out to be an excellent stress test of an LBP

language’s flexibility.

6.1 Semantic Role Labeling

The SRL implementation involves two independently learned classifiers and a host of hard con-

straints governing their behavior at inference-time. While the constraints often involve several

discrete output variables simultaneously, the features each depend on a single output variable in a

simple way. In particular, each feature can be on only when its associated discrete output variable

takes a particular value. Put another way, we can consider all output variables to be Boolean and

simply say that each feature is the conjunction of a single output variable and some function of the

input. Thus, we have the exactly the situation described by Equation (4.1), and LBJ should make

the implementation of the system much easier.
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1. discrete% CandidateFeatures(Argument a) <-
2. PhraseType, HeadWordAndTag, LinearPosition, Path, WordsAndTags, WordLength,
3. ChunkLength, Chunk, ChunkPattern, ChunkPatternLength, ParsePosition,
4. ClauseCoverage
5.
6. discrete{false, true} ArgumentIdentifier(Argument a) <-
7. learn ArgumentIdentifierLabel
8. using CandidateFeatures, PredicatePOS && PhraseType,
9. PredicatePOS && HeadWordAndTag, PredicatePOS && ParsePosition,
10. VerbNegated && LinearPosition, VerbNegated && Path,
11. ContainsModal && LinearPosition, ContainsModal && Path
12. with new SparsePerceptron(.1, 0, 4)
13. from new FilterParser(Constants.chunkTrainingData) 10 rounds
14. end

Figure 6.1: SRL argument identification: The learned classifier is specified as a function of feature
expressions, a learning algorithm, and data.

6.1.1 Learning Classifiers

In Figure 6.1, we see the specification of the argument identifier classifier as a function of fea-

tures (line 8), a learning algorithm (line 12), and data (line 13). A multi-class classifier named

ArgumentTypeLearner (not pictured) implements the argument type classifier and is very similar.

The using clause beginning on line 8 lists all classifiers used as feature extractors. In this case, they

are all conjunctive feature expressions with the notable exception of CandidateFeatures, which is

specified on line 1 as a list of several hard coded classifiers. The learning algorithm is instantiated

on line 12 with parameters hard-coded, though we could also have used LBJ’s parameter tuning

syntax and cval clause (Section 4.2.3) to tune these parameters automatically. Finally, Argument

objects are parsed from the data by the user-defined FilterParser class on line 13, and the LBJ

compiler will perform 10 passes over this labeled data at training-time.

Typically, the vast majority of classifiers used for feature extraction are hard-coded. When hard

coding a classifier as in Figure 6.2, arbitrary Java 1.4 syntax is available to collect the information

relevant to the extracted features. If a more modern Java release would be more convenient, the user

can simply implement the bulk of the classifier’s functionality in the external Java source codes and

retrieve the computed results in the classifier specification. Lines 1 and 2 in Figure 6.2 do precisely
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1. discrete PredicateLemma(Argument a) <- { return a.getVerb().lemma; }
2. discrete PredicatePOS(Argument a) <- { return a.getVerb().partOfSpeech; }
3. discrete% Predicate(Argument a) <- {
4. sense PredicateLemma(a);
5. sense PredicatePOS(a);
6. }

Figure 6.2: SRL features: Hard coded classifiers can use arbitrary Java, and any classifier can be
called as if it were a method elsewhere in an LBJ source file.

that. In fact, this has become a preferred strategy of LBJ programmers in general. Nonetheless,

the strategy does LBJ-specific syntactic sugar such as the ability to call a classifier as if it were a

regular method (lines 4 and 5) still comes in handy.

6.1.2 Enforcing Constraints

The two learned classifiers ArgumentIdentifier and ArgumentTypeLearner are trained completely

independently of each other, meaning that neither makes use of the other’s learned parameters or

predictions in any way. In fact, neither makes use of its own predictions on other arguments during

training or testing either. This scenario can lead us to a set of predictions on the arguments of

a given verb that are incoherent when taken as a whole. For example, we know from the task’s

definition that no two overlapping phrases should be given types by the type classifier. Second,

according to the semantic definition of the classifiers, the filter constraint (see Section 3.3.2) must

hold. Finally, we can use the PropBank[Kingsbury and Palmer, 2002] frames to narrow our output

space down to only those predictions that make sense for the given verb.

Figure 6.3 lists the LBJ source code of a constraint that prevents the argument type classifier

from giving a non-null type to any two overlapping arguments in a sentence. A closer look at the

code shows that it is in fact implemented as a series of small constraints involving all and only

those arguments that contain a given word. Note that each Argument object is associated with a

particular verb, since the goal is to determine its role with respect to that verb. The loops on lines

2 and 5 iterate over the verbs and words in the sentence respectively. The loop on line 8 iterates

over the arguments associated with the current verb while creating a list of those arguments that
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1. constraint NoOverlaps(SRLSentence sentence) {
2. for (int i = 0; i < sentence.verbCount(); ++i) {
3. ParseTreeWord verb = sentence.getVerb(i);
4. LinkedList forVerb = sentence.getCandidates(verb);
5. for (int j = 0; j < sentence.words.length; ++j) {
6. if (sentence.words[j] == verb) continue;
7. LinkedList containsWord = new LinkedList();
8. for (Iterator I = forVerb.iterator(); I.hasNext(); ) {
9. Argument candidate = (Argument) I.next();
10. ParseTreeNode constituent = candidate.getConstituent();
11. if (constituent.firstWordIndex() <= sentence.words[j].index
12. && sentence.words[j].index <= constituent.lastWordIndex())
13. containsWord.add(candidate);
14. }
15. atmost 1 of (Argument a in containsWord)
16. ArgumentTypeLearner(a) !: "null";
17. }
18. }
19. }

Figure 6.3: SRL structural constraint: The task’s definition says that typed arguments of a given
verb cannot overlap. Violations of that definition are disallowed explicitly with a hard constraint.

contain the current word. Finally, the LBJ constraint syntax on lines 15 and 16 makes sure that at

most one of the arguments in the list can be given a non-null type. This FOL-like syntax will be

translated to linear inequalities at run-time.

The constraint in Figure 6.4 expresses the relationship between the two classifiers as designed by

the programmer. Note how this concise definition of the filter constraint bears a striking resemblance

to its formal representation in Equation (3.17), albeit with longer variable names. Of course, we’ve

already seen that this won’t always be the case, but moving pure Java code into external static

methods often makes it possible.

Finally, expert knowledge derived from external resources can be injected directly into the system

via constraints, as illustrated by Figure 6.5. In this case, we have a Java loop on line 2 iterating over

the verbs in the sentence and LBJ syntax on lines 6-8 which will eventually encode Prop Bank’s

knowledge in linear inequalities. Note that the objects iterated over by LBJ’s quantifiers need not

be arguments of classifiers. On line 7, the exists quantifier iterates over a list of strings which

happen to function as prediction values.

59



1. constraint FilterConstraint(SRLSentence sentence) {
2. forall (Argument a in sentence.allArguments())
3. ArgumentIdentifier(a) :: false => ArgumentTypeLearner(a) :: "null";
4. }

Figure 6.4: SRL classifier semantics: The argument identifier and type classifier are related to each
other by user-design.

1. constraint LegalArguments(SRLSentence sentence) {
2. for (int i = 0; i < sentence.verbCount(); ++i) {
3. ParseTreeWord verb = sentence.getVerb(i);
4. LinkedList forVerb = sentence.getCandidates(verb);
5. LinkedList legal = PropBankFrames.getLegalArguments(verb.lemma);
6. forall (Argument a in forVerb)
7. exists (String type in legal)
8. ArgumentTypeLearner(a) :: type;
9. }
10. }

Figure 6.5: SRL domain knowledge: Constraints can also infuse expert knowledge into the system.

An important characteristic that all these constraints have in common is that they all take

SRLSentence objects as input. That’s because a single sentence is the smallest data structure that

encapsulates all of the information needed to pose the SRL CCM. We know this because all of the

features employed by the two classifiers operate on a single argument, and none of the constraints

operate over arguments from different sentences. Thus, a sentence corresponds directly to a CCM

optimization problem. In LBJ syntax, we call each SRLSentence instance a head object, and we

define SRL’s inference problem in terms of it.

Figure 6.6 shows just such a definition. Each inference specification has a name, and we see this

inference’s head object is a sentence in line 1. Lines 4-8 are a constraint declaration with exactly

the same syntax inside the curly braces as those we’ve already seen. This one simply invokes a

set of constraints defined elsewhere, conjuncting them all together. At run-time, this constraint is

evaluated given the head object, and in so doing, all of the output variables involved in the inference

60



1. inference SRLInference head SRLSentence sentence {
2. Argument a { return a.getConstituent().getSentence(); }
3. normalizedby new Softmax()
4. subjectto {
5. @NoOverlaps(sentence) /\ @NoDuplicates(sentence) /\ @VA1CV(sentence)
6. /\ @References(sentence) /\ @Continuences(sentence)
7. /\ @LegalArguments(sentence);
8. }
9. with new ILPInference(new GLPKHook())
10. }
11.
12. discrete ArgumentType(Argument a) <- SRLInference(ArgumentTypeLearner)

Figure 6.6: SRL inference: The CCM finally comes together in the specification of an inference
problem. The result is a constrained version of the learned classifier.

problem are discovered. The optimization problem’s objective function is implicitly linear in those

output variables with coefficients coming from the corresponding classifiers’ scores. However, those

coefficients can be customized using normalization functions such as softmax, as shown in line 3.

Finally, the inference algorithm is specified in line 9.

The observant reader will have noticed that we neglected to describe the so-called “head-finder”

declaration1 on line 3. In order to better understand its purpose, we need to understand how the

user will retrieve the output of the CCM’s optimization. With the inference structure of Figure 6.6

in place, it is now possible to define the constrained incarnation of each learned classifier involved

in the CCM. The syntax on line 12 shows the constrained version of ArgumentTypeLearner being

“pulled out” of SRLInference. The new ArgumentType classifier’s output given its argument input

will be the optimal prediction as determined by SRLInference for the containing sentence. So, in

order for SRLInference to do its job, we need to find the head object given a learned classifier’s

input object. That’s precisely what line 3 does for arguments and sentences.
1See Section 4.2.5.
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6.1.3 Discussion

This SRL system involves a couple of independent classifiers and inference-time constraints intended

to be reconciled by an ILP solver. LBJ’s abstractions work well for it. In particular, learning clas-

sifier expressions automatically handle feature extraction and management, and the declarative,

FOL constraint syntax enables the programmer to think about his task in terms of logical expres-

sions rather than forcing him to solve a linear inequality puzzle. Furthermore, the end result is

constrained incarnations of the original learned classifiers, making integration of ILP’s complex

inference infrastructure completely transparent to an end-to-end system that calls the classifiers.

Nonetheless, there is still some lingering viscosity and diffuseness in learning classifier specifica-

tion (as noted in Section 5.2.2) as well as non-intuitive syntax in inference specification. The root

cause of the learning classifier syntax unfriendliness is transparency. LBJ treats each learning classi-

fier as a black box, making it hard to do any analysis or post processing over the learned parameters

themselves. Workarounds can be devised on the Java side, but this adds external complexity to the

development cycle, meaning that LBJ can’t help the programmer manage it.

Furthermore, the inference syntax is difficult to comprehend for a first time user of the language.

Without a lot of background knowledge, the purpose of the head object and head finder declarations

are not obvious. Even with that background knowledge, the inference block structure feels like a

kludge. The underlying issue is that the models we wish to express involve features over multiple

output variables, while the features LBJ is capable of expressing can be applied only to a single

output variable. Instead of expanding classifier related syntax to accommodate the more general

case, the inference and constraint syntax attempts to tether multiple instances of the specific case

to each other, but fails to render for the user a complete, global picture of the problem being solved.

6.2 Coreference Resolution

Coreference resolution is the task of determining which words and phrases in one or more documents

refer to the same real world entity. ACE [NIST, 2004] defines a noun phrase referring to a real

world entity as a mention and to mutually exclusive sets of coreferring mentions as entities, and
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An American official announced that American President Bill Clinton met

his Russian counterpart Vladimir Putin today.

Figure 6.7: Pairwise coreference variables depicted as a graph. The nodes are mentions of real world
entities. Edges between pairs of mentions represent the variables. A solid, green edge indicates that
the variable is turned on, whereas a dashed, red edge indicates the opposite.

we will use that terminology here as well. Entities may be people, organizations, political groups,

locations, etc., and mentions may be proper names, pronouns, nominal noun phrases, or premodifier

references. For example, in Figure 6.7, the head word of each mention is circled, and solid, green

edges indicate which mentions refer to the same entity. The task of coreference resolution is to take

such a sentence as input and determine which phrases should be circled and which should have edges

between them. Coreference resolution is an important prerequisite for many other natural language

processing endeavors such as information extraction, textual entailment, question answering, and

the assessment of coherence in a document.

The focus of this section will be a discussion of the issues encountered when posing coreference

resolution as a CCM. We begin in Section 6.2.1 with a simple, ad-hoc model that performs very well

in practice. Section 6.2.2 then introduces a class of constraints that enable the trivial incorporation

of expert knowledge into a coreference resolution system: transitivity constraints. Finally, section

6.2.3 discusses the combination of multiple models such that their predictions are weighed against

each other for their mutual benefit.

6.2.1 Implicit Clustering

One of the best performing coreference systems available today is the simple, pairwise model of

Bengtson and Roth [Bengtson and Roth, 2008]. This model uses a comprehensive feature set to

produce a high precision, low recall prediction indicating whether a given pair of mentions is coref-

erent. It follows that the model is often wrong when it predicts that two mentions are not coreferent,

and in turn that predictions are often inconsistent when taken collectively. For example, given men-

tions {mi,mj ,mk} ⊂ M, if mention pairs 〈mi,mj〉 and 〈mj ,mk〉 are predicted coreferent, but
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mention pair 〈mi,mk〉 is predicted non-coreferent, how should we resolve the ambiguity?

Following [Ng and Cardie, 2002], Bengtson and Roth use the simple “Best-Link” clustering al-

gorithm, which was found to outperform the “Closest-Link” clustering algorithm from the seminal

work of [Soon et al., 2001]. In Best-Link clustering, we process the document from left to right,

considering each mention mj in turn. If there exists at least one mention mi, i < j such that the

classifier produces a score on the pair 〈mi,mj〉 higher than some predetermined threshold θ, then a

link is established between mj and the particular mi yielding the highest score from the classifier.

This process results in a forest of links between mentions. Finally, we take the transitive closure

over this forest to produce the final clustering.

Best-Link clustering is easy to implement in any programming language. However, if we encode

the approach as a CCM and solve it with ILP, we may be able to add additional domain knowledge

via constraints that would be difficult to incorporate in a procedural implementation. Assume we

have a document D containing a set of mentions {mi}ni=1,mi ∈ M, a pairwise scoring function

c : M×M → R, and the threshold θ described above. We can then write the CCM objective

function

z(m,y) =
n∑
j=2

j−1∑
i=1

(c(mi,mj)− θ)yi,j (6.1)

where yi,j ∈ {0, 1} represents the Boolean decision to establish the link 〈mi,mj〉. Note that an

incentive to establish each link exists only when c(mi,mj) > θ, exactly as intended. The scoring

function can be learned as a standard LTU. Bengtson and Roth used the regularized, averaged

Perceptron learning algorithm [Freund and Schapire, 1999].

However, this objective function will not yield the same prediction as a Best-Link decoder yet.

To ensure that it does, we need to design an appropriate constraint. This is not so difficult to do

in an ILP setting:

max
n∑
j=2

j−1∑
i=1

(c(mi,mj)− θ) yi,j

s.t.
j−1∑
i=1

yi,j ≤ 1 ∀j

0 ≤ yi,j ≤ 1 ∀i, j | i < j

yi,j integer ∀i, j | i < j

(6.2)
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1. discrete{false, true} PairwiseCoref(MentionPair p) <- // Definition omitted
2.
3. inference BestLink head Document d {
4. MentionPair p { return p.getDocument(); }
5. subjectto {
6. forall (Mention m_j in d)
7. atmost 1 (Mention m_i in d.before(m_j))
8. PairwiseCoref(d.getMentionPair(m_i, m_j)) :: true;
9. }
10. with new ILPInference(new GLPKHook())
11. }

Figure 6.8: Best-Link decoding for coreference resolution expressed as an LBJ constraint.

It’s also very easy to do in LBJ, as evidenced by Figure 6.8. In fact, the ILP instances generated by

that code at run-time have exactly this form. Notice in particular that the object being classified is

a mention pair obtained from the document object. Internally, the document is ensuring that only a

single mention pair object exists for any given pair of mentions, and this solitary object is returned

every time it is requested by the getMentionPair(Mention, Mention) method. This is important

because LBJ treats classifications made on distinct objects as separate inference variables even if

the programmer intended those distinct objects to represent, for example, the same mention pair.

It can be shown that all vertices of this ILP’s feasible region have only integral coordinates

using the theory of total unimodularity. Thus, no matter the objective function, efficient linear

programming algorithms are sufficient to derive an integral solution [Hoffman and Kruskal, 1956].

As a result, Best-Link decoding can be carried out efficiently in an optimization framework. This

result is not surprising considering the simplistic structure of the Best-Link algorithm. The an-

tecedent selection for each mention happens completely independently of the antecedent selection

for every other mention. Certain kinds of constraints such as the one in [Bengtson and Roth, 2008]

which prohibits a mention that is not a pronoun from selecting a mention which is a pronoun as its

direct antecedent can also be incorporated easily. However, see Section 6.2.2 for a discussion of the

limitations of this formulation in general.
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6.2.2 Explicit Clustering

While the inference regimen described in Section 6.2.1 is efficient and performs well, it leaves some-

thing to be desired in its linguistic motivations. Its output is a forest of mention links whose

transitivity is merely implicit; simply take the transitive closure without verifying, by the classi-

fier or any other means, the coreference of mentions not explicitly linked to each other. Thus,

important information learned by the classifier about which mentions cannot be coreferent may

be ignored. Additionally, it is difficult to enforce as an LBJ constraint the expert knowledge we

may have about two mentions mi and mj that cannot be in the same cluster. Simply adding the

constraint PairwiseCoref(d.getMentionPair(m_i, m_j)) :: false will not suffice, since solutions

involving 〈mk,mi〉 and 〈mk,mj〉 for some k < i will still satisfy all constraints even though they

violate our intentions.

Furthermore, when expert knowledge prescribes that mentionsmi andmj must be coreferent, the

constraint PairwiseCoref(d.getMentionPair(m_i, m_j)) :: true may not have the desired effect.

This constraint overrides the classifier’s decision to link mj to some other mention mk, k < j. In

general, the sets of mentions connected to mi and mk are different, and switching mj ’s antecedent

in this way may not have a positive overall effect on the document’s clustering. We’d prefer an

optimization scheme that reorganizes our clustering under these conditions, but since antecedent

selections are completely independent in Best-Link clustering, no such reorganization will occur.

We explore two possible CCM formulations for dealing with these issues. First, we try abandon-

ing the Best-Link constraints for constraints that directly enforce transitivity. Next, we consider

more complex formulations that preserve the spirit of Best-Link clustering while supporting addi-

tional constraints more effectively than the original Best-Link formulation on its own. Finally, we

discuss some options available when the corresponding ILPs become intractable.

Encoding Transitivity Directly

The idea to enforce transitivity directly over a pairwise classifier is inspired by the notion that both

positive and negative coreference evidence discovered by that classifier should be taken into account

when arranging the final clustering. Managing these types of competing concerns is exactly what
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CCMs are intended for. We merely need to express as constraints the idea that whenever mention

pairs 〈mi,mj〉 and 〈mj ,mk〉 are deemed coreferent, mention pair 〈mi,mk〉 should be as well. That

way, when there is strong evidence against the coreference of 〈mi,mk〉, the ILP solver will be forced

to reconsider the other two mention pairs.

The aforementioned constraints need to be enforced over all triples of mentions 〈mi,mj ,mk〉.

We can accomplish this in an ILP setting with constraints such as:

max
n∑
j=2

j−1∑
i=1

c(mi,mj) yi,j

s.t. yi,j + yj,k ≤ yi,k + 1 ∀i, j, k

0 ≤ yi,j ≤ 1 ∀i, j | i < j

yi,j integer ∀i, j | i < j

(6.3)

The first constraint says that when both yi,j and yj,k are 1, yi,k will have to be 1 for the constraint

to be satisfied. If either yi,j or yj,k is 0, then no requirement is enforced on the value of yi,k. For a

given triple of mentions, say 〈m1,m2,m3〉, we will have the constraints

y1,2 + y2,3 ≤ y1,3 + 1 (6.4a)

y1,2 + y1,3 ≤ y2,3 + 1 (6.4b)

y2,3 + y1,3 ≤ y1,2 + 1 (6.4c)

all of which are necessary to achieve the desired effect.

The alert reader will have noticed that ILP (6.3) actually includes many redundant linear in-

equality constraints. For example, if we’ve already enforced constraint (6.4a), there is no need to

include y2,3 + y1,2 ≤ y1,3 + 1 as well. Figure 6.9 illustrates LBJ code that, with the help of some

convenient in-line Java, judiciously generates only as many constraints as are needed.

The CCM described in Figure 6.9 will generate O(n3) constraints, and it can incorporate ad-

ditional constraints that force particular mention pairs to be coreferent or non-coreferent easily.

Unfortunately, we can’t use total unimodularity to guarantee that it will be efficient as we did in
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1. constraint Transitivity(Document d) {
2. ArrayList allMentions = d.allMentions();
3. for (int k = 0; k < allMentions.size(); ++k) {
4. Mention m_k = allMentions.get(k);
5. for (int j = 0; j < k; ++j) {
6. Mention m_j = allMentions.get(j);
7. MentionPair pair_jk = d.getMentionPair(m_j, m_k);
8. for (int i = 0; i < j; ++i) {
9. Mention m_i = allMentions.get(i);
10. MentionPair pair_ij = d.getMentionPair(m_i, m_j);
11. MentionPair pair_ik = d.getMentionPair(m_i, m_k);
12. PairwiseCoref(pair_ij) :: true /\ PairwiseCoref(pair_jk) :: true
13. => PairwiseCoref(pair_ik) :: true;
14. PairwiseCoref(pair_ij) :: true /\ PairwiseCoref(pair_ik) :: true
15. => PairwiseCoref(pair_jk) :: true;
16. PairwiseCoref(pair_jk) :: true /\ PairwiseCoref(pair_ik) :: true
17. => PairwiseCoref(pair_ij) :: true;
18. }
19. }
20. }
21. }

Figure 6.9: An LBJ constraint that enforces transitivity on a pairwise coreference classifier. Lines 12
and 13, 14 and 15, and 16 and 17 generalize linear inequalities (6.4a), (6.4b), and (6.4c) respectively.

the Best-Link case. It’s easy to see that the constraint matrix will not be totally unimodular by

noting that the constraints (6.4), which are themselves a sub-matrix of any ILP generated by Figure

6.9 involving 3 or more mentions, yield a constraint matrix whose determinant is −4.

However, Finkel and Manning [Finkel and Manning, 2008] found that the vast majority of the

documents in the MUC-6 and ACE Phase 2 testing sets could be processed in a reasonable amount of

time. They also showed an improvement (over tractable documents) in a variety of scoring metrics

as a result of enforcing transitivity. It is important to note as well that their pairwise classifier

was wisely trained on all pairs of mentions. This choice is likely more amenable to their inference

regimen than, for instance, the more selective set of mention pairs sampled by Bengtson and Roth

[Bengtson and Roth, 2008] at training-time.
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1. discrete{false, true} Connected(MentionPair p) <- learn using {} end
2.
3. constraint ConnectPaths(Document d) {
4. forall (Mention m_j in d.allMentions())
5. forall (Mention m_i in d.before(m_j))
6. Connected(d.getMentionPair(m_i, m_j)) :: true
7. <=> (PairwiseCoref(d.getMentionPair(m_i, m_j)) :: true
8. \/ (exists (Mention m_k in d.allMentions())
9. m_i != m_k && m_j != m_k :: true
10. /\ PairwiseCoref(d.getMentionPair(m_i, m_k)) :: true
11. /\ Connected(d.getMentionPair(m_j, m_k)) :: true));
12. }

Figure 6.10: The untrained Connected classifier’s classifications are intended to serve as aux-
iliary variables indicating when two mentions are connected via positive classifications of the
PairwiseCoref classifier. However, this intuitive formulation has unwanted side effects.

Applying Constraints to Best-Link Clustering

Best-Link clustering, while ad-hoc, does perform very well, so it is natural to attempt improving

it by adding expert knowledge in the form of constraints. However, as discussed above, this will

not be as straight forward as we might hope. We cannot simply add the transitivity constraints in

Figure 6.9 to the Best-Link constraints in Figure 6.8 since they contradict each other.2 So, we will

first create a set of auxiliary variables to keep track of which mentions are coreferent by implication

given a Best-Link forest. The semantics of these variables must be enforced by a carefully designed

set of constraints. Then we can enforce arbitrary constraints over the auxiliary variables.

Starting from ILP (6.2) we wish to define auxiliary variables ti,j ∈ {0, 1}, 1 ≤ i < j ≤ n such

that ti,j = 1 if and only if mentions mi and mj are connected via some path established by the y

variables. Of course, the ti,j variables won’t actually have this property unless we constrain them to

have it. The rest of this section will discuss the design of appropriate constraints for this purpose.

We’ll see that in LBJ, the auxiliary variables manifest themselves as the Boolean classifications of

an untrained classifier on the mention pairs. It is untrained so that the scores it produces are all 0,

thus leaving the objective function unaffected.
2In particular, if an entity contains more than two mentions, the transitivity constraints will want to link all but

the first two to more than one prior mention.
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m1

m2 m3

(a) Auxiliary variables
yielding transitive clo-
sure satisfy constraint
(6.5).

m1

m2 m3

(b) Auxiliary vari-
ables that merge the
two Best-Link trees
into one cluster satisfy
constraint (6.5) as
well.

Figure 6.11: A Best-Link forest (black, curved arrows) and auxiliary variables (red, straight edges)
intended to represent the transitive closure. Unfortunately, both instantiations of the auxiliary
variables satisfy constraints (6.5).

A Recursive Definition For our first attempt, we design our constraints “recursively,” like this:

ti,j ⇔ yi,j ∨ [∃k, k 6= i ∧ k 6= j ∧ yk,i ∧ tk,j ] (6.5)

This constraint breaks up the definition of ti,j into two clauses. First, it is clear that ti,j should be

1 whenever yi,j = 1. If yi,j 6= 1, perhaps there is a mention mk occurring elsewhere in the document

such that a) a Best-Link edge has been directly established between mk and mj , and b) mk is

known to be connected to mi through other Best-Link edges as indicated by our auxiliary variables

(thus giving this constraint a “recursive feel”). In total, the constraint will translate to O(n3) linear

inequality constraints.

Once again, this constraint has a very straight forward implementation in LBJ, as seen in Figure

6.10. Here, the Connected classifier applied to d.getMentionPair(m_i, m_j) plays the role of the ti,j

variable. The implicit universal quantifications in constraint (6.5) are made explicit in lines 4 and

5, and the two clauses as described above can be found in line 7 and lines 8 through 11 respectively.

Note that it would be quite a mentally taxing and error prone process to design manually the linear

inequalities that LBJ automatically generates from this specification.

It should be clear that if the ti,j variables are given settings that correspond to the transitive

closure of the Best-Link edges, then constraint (6.5) will be satisfied. However, this constraint also

70



allows undesirable auxiliary variable settings. In particular, any Best-Link tree containing more

than one mention can be merged into a single cluster with any other Best-Link tree via auxiliary

variable settings without violating the constraint. Figure 6.11 illustrates this scenario, wherein the

black, curved arrows represent Best-Link variables that have been set to 1, and the red, straight

edges represent auxiliary variables that have been set to 1. In Figure 6.11b, the auxiliary variables

have merged the two Best-Link trees into a single cluster.

So why should constraint (6.5) allow t1,2 = 1 and t1,3 = 1? Considering t1,2, the second clause

of the constraint is invoked, relying on the illegitimate assignment t1,3 = 1 to make its case3.

Considering t1,3, the second clause of the constraint is invoked again, relying on the illegitimate

assignment t1,2 = 1 to make its case. In this way, the two illegitimate assignments have reinforced

each other. Neither one could exist alone, but with both in place, the constraint is satisfied.

An Inductive Definition The problem with the recursive definition was that it might merge

clusters that aren’t supposed to be merged. One might try to prevent this by simply penalizing

the auxiliary variables in the objective function. While this can coerce constraint (6.5) to give

us the correct clusters, it might not be flexible enough in general. The reason is that the final

score given by the objective function to the complete assignment ends up penalizing larger clusters

disproportionately more than smaller clusters. If we wish to combine our coreference model with

another model, this may become problematic.4

We will now explore the possibility of designing our auxiliary variables so that they need not

be penalized. They will be designed inductively, in a series of tiers, with each new tier representing

a longer path length between all pairs of mentions. The variable named t(l)i,j will indicate whether

or not there exists a path of length exactly l along Best-Link edges (possibly containing repeated

edges) between mentions mi and mj . We will also retain the variables ti,j with their originally

intended semantics, and their definitions will be made possible by the observation that there can

be no path between two mentions (without repeated edges) of length more than n− 1.
3Note that we abuse notation slightly here, allowing e.g. t1,2 and t2,1 to refer to the same variable. The Java

implementation of getMentionPair(Mention, Mention) operates similarly on lines 10 and 11 of Figure 6.10
4On the other hand, there may be good linguistic motivation to penalize clusters in exactly this way, since most

documents have many more small clusters than large ones.
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1. constraint ConnectPaths(Document d) {
2. forall (Mention m_j in d.allMentions())
3. forall (Mention m_i in d.before(m_j))
4. (ConnectedLength2(d.getMentionPair(m_i, m_j)) :: true
5. <=> (exists (Mention m_k in d.allMentions())
6. m_i != m_k && m_j != m_k :: true
7. /\ PairwiseCoref(d.getMentionPair(m_i, m_k)) :: true
8. /\ PairwiseCoref(d.getMentionPair(m_j, m_k)) :: true))
9. /\ (ConnectedLength3(d.getMentionPair(m_i, m_j)) :: true
10. <=> (exists (Mention m_k in d.allMentions())
11. m_i != m_k && m_j != m_k :: true
12. /\ PairwiseCoref(d.getMentionPair(m_i, m_k)) :: true
13. /\ ConnectedLength2(d.getMentionPair(m_j, m_k)) :: true));
14. }

Figure 6.12: LBJ classifiers can’t be parameterized; thus it is hard to create auxiliary variables that
represent connectivity over pairwise coref links. However, we can achieve short-range transitivity
with tiers of auxiliary variables that increase path lengths one step at a time.

Below, we give the inductive definition of our auxiliary variables. Note that tier 2 serves as the

base case, since tier 1 would be equivalent to the existing Best-Link variables.

t
(2)
i,j ⇔ ∃k, k 6= i ∧ k 6= j ∧ yk,j ∧ yk,i (6.6)

∀l, 2 < l < n, t
(l)
i,j ⇔ ∃k, k 6= i ∧ k 6= j ∧ yk,j ∧ t

(l−1)
k,i (6.7)

ti,j ⇔ yi,j ∨ ∃l, 2 ≤ l < n, t
(l)
i,j (6.8)

Under this formulation, the ti,j variables have the intended semantics without the need to give them

non-zero coefficients in the objective function. However, it translates to O(n4) linear inequality

constraints as opposed to O(n3) in the recursive formulation.

Unfortunately, there is no easy way to implement these constraints generally in LBJ. The prob-

lem is that the quantity of auxiliary variable tiers depends on the number of mentions in the

document. LBJ does not provide any mechanism for parameterizing a classifier’s definition aside

from the lone input object argument. However, one can still implement a predefined constant num-

ber of tiers as shown in Figure 6.12. This leaves us a notion of short-range transitivity, which may

be sufficient much of the time, and which will be more tractable than full transitivity.
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To reiterate, either the recursive or the inductive formulation will now support arbitrary con-

straints over the auxiliary variables. In particular, we can add constraints that force a particular

pair of mentions either to be in the same cluster or not via PairwiseCoref(d.getMentionPair(m_i,

m_j)) :: true and PairwiseCoref(d.getMentionPair(m_i, m_j)) :: false, respectively. The ILP

solver will then reorganize the Best-Link edges in accordance with these constraints.

6.2.3 Combining Multiple Models

To this point, the discussion about our learned classifiers has been concerned mainly with making

sure that a particular classifier’s predictions are consistent when applied repeatedly. In this sec-

tion, we’ll see how CCMs can combine multiple models such that they all benefit from their shared

information. This type of model combination should be distinguished from so-called “pipeline”

approaches such as the SRL implementation of [Punyakanok et al., 2008] in which models are eval-

uated in a predefined order with earlier models used as filters or features for later models. In a

pipeline approach, the predictions made by each model are non-negotiable in later stages of the

pipeline. In the combination approach discussed presently, however, no predictions are made until

a consensus is reached among all models. Knowledge encoded in the constraints can thereby serve

to improve every model’s prediction quality.

Two prime examples of model combination involving coreference resolution models came from

the work of Denis and Baldridge, who paired an anaphoricity model [Denis and Baldridge, 2007] and

a named entity model [Denis and Baldridge, 2009] with their coreference classifier using ILP. We

now discuss their approaches paying particular attention to how their linear inequality constraints

were designed and how they can be implemented in LBJ.

Anaphoricity

A phrase is considered anaphoric (roughly) if it refers to some real world entity described more

explicitly elsewhere in the discourse. Determining the anaphoricity of a mention differs from the

coreference resolution task in two major ways. First, anaphoricity is a Boolean decision on a single

mention; we are not interested in determining which entity is being referred to. Second, explicit

73



references to the entity (e.g. proper names) are not considered anaphoric; instead, they are the

mentions to which anaphoric mentions refer. That said, we will make the simplifying assumption

that the only non-anaphoric mention in any cluster of coreferent mentions is the one occurring

earliest in the document.

Given a model of anaphoricity, we’ll need new ILP variables to represent its predictions. Let

y
(a)
i ∈ {0, 1}, 1 ≤ i ≤ n indicate whether or not mention i is an anaphor. We’ll also need a new

scoring function a : M → R giving the learned anaphoricity model’s score on a given mention.

Next, we need to decide how our joint coreference-anaphoricity model decomposes the probability

of a document. For the purposes of this exposition, let’s define our joint model to simply multiply

all the relevant coreference and anaphoricity probabilities together.

Finally, we will constrain our two types of variables to agree with each other. Since a mention

is anaphoric (by Denis and Baldridge’s definition) if it has an antecedent, we must ensure that y(a)j

is 1 whenever yi,j is 1 for some i < j. Furthermore, it would be inconsistent to allow y
(a)
j to be 1

if there isn’t any pair of mentions 〈mi,mj〉, i < j predicted as coreferent by the pairwise classifier.

Using this logic, we arrive at the formulation proposed in [Denis and Baldridge, 2007] in which the

first two linear inequalities are borne of the arguments above.

max

n∑
j=2

j−1∑
i=1

c(mi,mj) yi,j +

n∑
i=1

a(mi) y
(a)
i

s.t. yi,j ≤ y(a)j ∀i, j | i < j
j−1∑
i=1

yi,j ≥ y(a)j ∀j

0 ≤ yi,j ≤ 1 ∀i, j | i < j

0 ≤ y(a)i ≤ 1 ∀i

yi,j integer ∀i, j | i < j

y
(a)
i integer ∀i

(6.9)

Alternatively, LBJ can help us encode these ideas by writing the constraint shown in Figure

6.13. Here, we again see the above arguments explicated in a logical form. However, this form of

expression expresses our requirements more directly and intuitively; we did not need to search for
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1. constraint ConsistentCorefAndAnaphoricity(Document d) {
2. forall (Mention m_j in d.allMentions())
3. forall (Mention m_i in d.before(m_j))
4. PairwiseCoref(d.getMentionPair(m_i, m_j)) :: true
5. => Anaphoricity(m_j) :: true;
6. forall (Mention m_j in d.allMentions())
7. Anaphoricity(m_j) :: true
8. => (exists (Mention m_i in d.before(m_j))
9. PairwiseCoref(d.getMentionPair(m_i, m_j)) :: true);
10. }

Figure 6.13: Constraining the predictions of the anaphoricity classifier to be consistent with those
of the pairwise coreference classifier.

linear expressions that capture the desired logic. At run-time, the constraint expressions beginning

on lines 2 and 6 of Figure 6.13 will be automatically translated into the first two linear inequalities

of ILP (6.9) respectively.

Note that without transitivity constraints, a post-processing step is required in which an implicit

transitive closure is taken over the links in the CCM’s solution. In fact, the coreference classifier

is completely unconstrained other than with respect to the anaphoricity classifier. If not for those

constraints, the ILP solver would simply turn on all and only those links for which c(mi,mj) > 0.

With those constraints, however, the scores from the two models are weighed against each other.

This causes the predictions of the joint formulation to differ from those of the Boolean coreference

classifier on its own whenever and only when the two models disagree and the anaphoricity model

“wins.” There are exactly two such situations:

(i) ∃j, a(mj) > 0 > max
i<j

c(mi,mj) and a(mj) > −max
i<j

c(mi,mj); therefore it is beneficial to link

the highest (albeit negative) scoring mention pair so that the anaphoricity reward can also be

collected.

(ii) ∃j, a(mj) < 0, |I+(j)| > 0, and −a(mj) >
∑

i∈I+(j)

c(mi,mj), where I+(j) = {i | i <

j ∧ c(mi,mj) > 0}; therefore it is beneficial to turn off all links in {〈mi,mj〉 | i ∈ I+(j)} so

that the anaphoricity penalty is not incurred.

Denis and Baldridge found that situation (i) was the more prevalent of the two, leading to an increase
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max
n∑
j=2

j−1∑
i=1

c(mi,mj) yi,j +
n∑
i=1

(
a(mi) y

(a)
i +

∑
t∈T

ν(mi, t) y
(n)
i,t

)
s.t. yi,j ≤ y(a)j ∀i, j | i < j

 Anaphoricityj−1∑
i=1

yi,j ≥ y(a)j ∀j

1− yi,j ≥ y(n)i,t − y
(n)
j,t ∀i, j, t | i < j, t ∈ T

 Named entities1− yi,j ≥ y(n)j,t − y
(n)
i,t ∀i, j, t | i < j, t ∈ T∑

t∈T
y
(n)
i,t = 1 ∀i

0 ≤ yi,j , y(a)i , y
(n)
i,t ≤ 1 ∀i, j, t | i < j, t ∈ T

 Boolean variables
yi,j , y

(a)
i , y

(n)
i,t integer ∀i, j, t | i < j, t ∈ T

Figure 6.14: Coreference, anaphoricity, and named entity models all take part in a single ILP in
which each model vets the predictions of the other two.

in the number of coreference links established by their model. This, in turn, lead to a performance

boost as measured by the MUC scoring metric, which is known to favor larger clusters [Luo, 2005],

and a performance degradation as measured by both B3 and CEAF [Denis and Baldridge, 2009].

Named Entity Classification

During coreference resolution, Denis and Baldridge assume that mention boundaries are given.

Since it is a reasonable assumption that all named entities appearing in a document constitute

separate mentions, the named entity recognition task becomes simply named entity classification.

The ACE dataset on which they evaluated their approaches offers five named entity types: person,

organization, location, geo-political entity, and facility.

To combine a named entity model with our existing models, we wish to follow the same line of

reasoning that we used when combining the anaphoricity model with the coreference model. Thus,

we simply need to add a multi-class classifier’s output variables as described in Section 3.2.2. We’ll

call these variables y(n)i,t ∈ {0, 1}, 1 ≤ i ≤ n, t ∈ T , where T is the set of named entity types. Thus,

in contrast to the Boolean models where a single ILP variable was sufficient, in this case we need one

ILP variable for each possible prediction value. They must also be constrained so that only a single
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1. constraint ConsistentCorefAndNamedEntities(Document d) {
2. forall (Mention m_j in d.allMentions())
3. forall (Mention m_i in d.before(m_j))
4. PairwiseCoref(d.getMentionPair(m_i, m_j))
5. => NamedEntityTypeLearner(m_i) :: NamedEntityTypeLearner(m_j);
6. }

Figure 6.15: The clever, but hard to envision named entity linear inequalities in Figure 6.14 could
be replaced with this equivalent and straight forward encoding of the same constraint.

variable takes the value 1 for any given i. We’ll also need a new scoring function ν :M× T → R

giving the learned named entity model’s score on a given mention and entity type.

Finally, we must define the relationship between our new named entity model and the other

two models. Denis and Baldridge impose the constraint that coreferential mentions must have the

same named entity type. Adding these ideas to ILP 6.9, we get the formulation shown in Figure

6.14. Take a look at the first two named entity constraints in that figure. They are identical, except

that the variables on the right hand side of the inequality switch places. In either case, the right

hand side will always evaluate to a value in {−1, 0, 1}. Thus, these constraints have no effect when

yi,j = 0. However, when yi,j = 1, we now require both versions to take a value less than or equal

to 0. Since the two versions are opposites of each other, the only option is 0. In that case, for all t,

y
(n)
i,t = y

(n)
j,t . A clever mechanism to be sure, but it likely took more time and effort to design these

linear inequalities than to write the equivalent LBJ code in Figure 6.15.

We should expect the incorporation of these named entity constraints to increase the precision of

our coreference model, and we hope they’d improve the accuracy of our named entity classifications

as well. The precision of the coreference model would increase because of cases where it believes two

mentions are coreferent, but the named entity model more strongly believes their entity types are

different and disallows the link. Named entity classifications would see an improvement in accuracy

if there are mentions whose classification is unclear, but which are resolved by strong coreference

links. Denis and Baldridge [Denis and Baldridge, 2009] confirm these intuitions about coreference

precision, even when the anaphoricity constraints are not present, although the boost is not quite

as great as simply using Closest-Link clustering with no other constraints. Unfortunately, named
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entity classification accuracy was not reported.

6.3 Part of Speech Tagging

From a modeling perspective, LBJ was largely successful at describing solutions for the Semantic

Role Labeling and coreference resolution tasks. Both tasks are large-scale structured learning prob-

lems in which many competing concerns must be reconciled. However, the complexity and scale of

the tasks themselves as well as their nascence might have turned out to be an unfair bias in LBJ’s

favor; the investigating researchers may well have been encouraged to keep their initial approaches

as simple as possible as a result.

The Part of Speech (POS) Tagging task, however, has been studied heavily for many years, and

implementations thereof have been finely tuned. Furthermore, it is very natural to think of POS

tagging as structured, since the tag of any given word certainly depends on the tags of the other

words in the sentence. Indeed, the design of a competitive and performant POS tagger places a

variety of demands on an LBP language which deserve consideration. As we consider them, we use

examples from the Illinois POS Tagger5 based on [Roth and Zelenko, 1998] as implemented in LBJ.

The Illinois POS Tagger uses two independently trained linear POS models; one classifies words

that are “known” and the other classifies words that are “unknown.” A word is considered known

if it was observed in the labeled training data. During training, the unknown word classifier is

trained on those words in the corpus that occur less often than some predefined threshold. The

two classifiers have essentially the same features, which we should expect to simplify their mutual

design. However, there’s a complication to watch out for: the tags of the previous two words are

used as features when classifying the current word. During training, tags are available for all words,

and Roth and Zelenko use these labels as values for the previous tag features at that time. Of

course, they are not available during testing, so the same features will take their values from the

predictions made previously by whichever classifier was applied.

Both models also use the predictions of another learned model as feature values. This model is

called the baseline classifier, and it very simply classifies each word as the most popular tag observed
5http://cogcomp.cs.illinois.edu/page/software_view/3
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1. discrete POSTagger(Token w) <- {
2. if (baselineTarget.observed(wordForm(w)))
3. return POSTaggerKnown(w);
4. return POSTaggerUnknown(w);
5. }
6.
7. discrete baselineTarget(Token w) <-
8. learn POSLabel
9. using wordForm
10. from new POSBracketToToken(Constants.trainingAndDevData)
11. with new POSBaselineLearner()
12. preExtract false
13. end

Figure 6.16: At inference-time, the POSTagger classifier calls on one of two models depending on
whether the target word was encountered during training. The baseline classifier learns using a
custom learning algorithm implementation that defines an observed(String) method.

for that word during training. Its predictions are then used both as a noisy signal directly indicating

the current word’s tag as well as the next two tags in the sentence. Just as for the previous two

tags, the values for the next two tags can be taken from the labels during training. However, for

computational reasons, there’s no good way to use the POS models’ predictions on both the previous

two tags and the next two tags during testing, hence the use of the baseline classifier for the next

two tags.

In addition, both models are constrained to select from only a subset of all possible parts of

speech as a function of the word being classified. In the case of known words, the prediction is

constrained to be one of the tags observed for that word in the training data. Unknown words are

restricted according to the rules generated by an inductive process described in [Mikheev, 1997].

6.3.1 Models and Features

As we can see in Figure 6.16, the Illinois POS Tagger employs one of two learned models to

make a prediction on each word encountered during testing. The choice of model is determined

by querying the baseline classifier which knows whether a word was observed during training or

not. Implemented as baselineTarget, the baseline classifier uses a custom learning algorithm
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1. discrete labelOneBefore(Token w) <- {
2. if (w.previous != null) {
3. if (POSTaggerKnown.isTraining) return POSLabel(w.previous);
4. return POSTagger(w.previous);
5. }
6. return "";
7. }
8.
9. discrete labelOrBaseline(Token w) <- {
10. if (POSTaggerKnown.isTraining) return POSLabel(w);
11. return baselineTarget(w);
12. }
13.
14. discrete labelOneAfter(Token w) <- {
15. if (w.next != null) return labelOrBaseline(w.next);
16. return "";
17. }

Figure 6.17: The Illinois POS Tagger’s features often derive their values from different sources
during training than during testing.

implemented in Java which provides some extra methods for accessing its compiled statistics,

such as the observed(String) method. Note also that the learned classifiers POSTaggerKnown and

POSTaggerUnknown are called as if they were methods on lines 3 and 4.

Most of the features used by the two learned models are functions of the tags (or some surrogate

thereof) in a window around the target word. In this implementation, we use two tags both before

and after the word being classified. However, as mentioned above, labels are only present during

training, so our features must be capable of obtaining their values from different sources in different

contexts. To make this possible, LBJ generates in each learned classifier a flag named isTraining

that it sets at LBJ compile-time to inform features such as those in Figure 6.17 that training data

is currently being processed.

The full list of features employed by the known word model can be found on lines 3 and 4

of Figure 6.18. Similarly to labelOneBefore, labelTwoBefore will call POSTagger on the word two

before the target. These recursive calls create a computational issue. For each successive call to

the tagger on a new word, all previous tags will be needlessly recomputed.6 Hence the invention of
6The situation is even worse since we have two such recursive calls. In this case, the number of recursive calls that
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1. discrete POSTaggerKnown(Token w) cachedin w.partOfSpeech <-
2. learn POSLabel
3. using wordForm, baselineTarget, labelTwoBefore, labelOneBefore,
4. labelOneAfter, labelTwoAfter, L2bL1b, L1bL1a, L1aL2a
5. with SparseNetworkLearner {
6. SparseAveragedPerceptron.Parameters p =
7. new SparseAveragedPerceptron.Parameters();
8. p.learningRate = .1;
9. p.thickness = 2;
10. baseLTU = new SparseAveragedPerceptron(p);
11. }
12. from new POSBracketToToken(Constants.trainingAndDevData) 50 rounds
13. evaluate valueOf(w, baselineTarget.allowableTags(wordForm(w)))
14. end

Figure 6.18: The Illinois POS Tagger’s known word model uses cachedin to memoize its features’
recursive calls and evaluate to invoke an alternate classification method at inference-time.

the cachedin keyword (and its brothers) on line 1 of the same figure. A classifier defined with this

keyword will be augmented with code that checks its argument (which must be a field access) for

a null value. The classifier’s prediction is computed and stored in this field if and only iff null is

found. Thus, the recursive calls are memoized.

Next, we’d like to define our unknown word model using essentially the same features with the

addition of some suffix related features that seem to work well. Using LBJ’s composite generator

syntax, it should be very simple to factor out the features in POSTaggerKnown’s using clause so they

can be reused elsewhere. However, our implementation of any feature making a recursive call (which

is most of them) is dependent on POSTaggerKnown’s isTraining flag. So we have two choices: either

we guard each recursive call with checks on both models’ isTraining flags or we implement new

versions of all our features whose only difference is a check on POSTaggerUnknown’s isTraining flag

instead of POSTaggerKnown’s. In the first case, the classifiers are made artificially dependent on each

other; if one tries to call the other while it is training but the other isn’t, the behavior will likely

be unexpected.7 In the second case, we end up with a lot of redundant code.

end up being made for each successive word in a sentence grows like the Fibonacci sequence.
7Such calls are not currently made being made.
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6.3.2 Constraints

While the tagger’s implementation does not make use of LBJ’s inference infrastructure, it does

still apply simple constraints over its learned models’ outputs. In particular, in the case of known

words, the prediction is constrained to be one of the tags observed for that word in the training

data. To effect this behavior as efficiently as possible, the evaluate clause was invented so that

the programmer could specify an alternate classification method for use whenever the classifier is

invoked. SparseNetworkLearner, the tagger’s chosen learning algorithm, would normally consider

every possible POS tag whenever it computed a prediction. However, with the inclusion of the

evaluate clause on line 13 of Figure 6.18, SparseNetworkLearner’s valueOf(Object, Collection)

method is called instead, and only the tags in the provided Collection will be evaluated.

Unknown words are restricted according to the rules generated by an inductive algorithm. Like

baselineTarget, the MikheevTable classifier, whose LBJ specification is not reproduced here, is

learned with a custom Java learner implementation and invoked in POSTaggerUnknown’s evaluate

clause (also not reproduced here). The training data for this learner is the same as for the unknown

word model, and the induced rules in this implementation are only those that associate sets of

candidate tags with prefixes and suffixes of the unknown words. See [Mikheev, 1997] for more

possibilities.

6.3.3 Discussion

LBJ simplified several aspects of the Illinois POS tagger’s design. Like all classifiers designed in LBJ,

feature extraction from indexing to pruning is managed internally, and classifiers are easy to reuse

as features for other classifiers or simply as methods called in a native Java program. However, there

were also some addendums afforded to LBJ’s syntax that are, perhaps, overly specified. In particular,

the evaluate clause amounts to an inference hook that pushes all the interesting decisions to the

Java side. Even the cachedin keyword, which can provide an impactful computational improvement,

is essentially a patch for LBJ’s lack of expressivity. A more general solution is desired, and it is the

subject of the next chapter.
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Chapter 7

Constrained Conditional Model
Processing Language

Our experience with Learning Based Java lead us to desire an LBP language with native support

for structured models in addition to the models that LBJ supported; i.e., a language for composing

and applying general Constrained Conditional Models. We present in this chapter the Constrained

Conditional Model Processing language (CCMP) which is designed from the ground up to support

CCMs. Unlike LBJ, CCMP is a general purpose, Turing complete programming language in which

features, sparse vectors, and models are primitive data types, and a host of novel operators are

provided for indexing features, computing with vectors, and composing new models from features

and existing models. CCMP affords the programmer a new level of abstraction for designing models

and their combination of which no previous LBP-like formalism is capable.

So as to be unambiguous about how CCMP works, we have formalized its semantics under the

K technique [Roşu and Şerbănuţă, 2010] in the rewriting logic language Maude [Clavel et al., 2007],

and we report on those semantics in Section 7.1. The equations and rules therein give a precise,

logical account of all the computations that take place when any operator is applied in a CCMP

code. After we have given the reader a sense for our formal semantics framework, we move on to

formalizations of the new types of values CCMP will be processing in Section 7.2. A discussion of

the processing itself then takes place in Section 7.3. Finally, since Maude is executable, we have

been able to test some simple implementations of structured learning based programs as described

in Section 7.4.
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7.1 Formal Semantics

CCMP is a general purpose, untyped, statically scoped, procedural programming language with

some functional and declarative flavor. We now report on our experience developing an operational

semantics for CCMP designed using the K technique [Roşu and Şerbănuţă, 2010] in the rewriting

logic language Maude [Clavel et al., 2007]. The equations and rules therein give a precise, logical

account of all the computations that take place when any operator is applied in a CCMP code.

Since Maude code is executable, we get an interpreter and debugger of CCMP for free, and thus we

have been able to evaluate the capabilities of the language on several important test cases, presented

in Section 7.4. This section also serves to introduce the general purpose programming facilities of

CCMP, laying the foundation for Section 7.3, in which we discuss its novel LBP primitives.

The CCMP language is described in around 4500 lines of Maude code specifying over 1000

rewrite rules, making a blow-by-blow account of these semantics infeasible. Instead, this section

intends to introduce the K technique to the reader using the general purpose portion of CCMP as

its running example.

7.1.1 Overview

Maude The Maude language is an implementation of a rewriting logic (RL) [Meseguer, 1992] with

a sound and complete proof system and initial model semantics. Maude rewrites terms described

under a signature modulo structural axioms such as associativity, commutativity, and identity. A

signature is essentially a pair (Σ, E) where Σ is an alphabet of function symbols1 and E is a set of

equations over Σ. Terms are composed of function symbols applied to other function symbols while

adhering to any syntactic rules put forth for them. The equations E describe with parameterized

terms the rewrites Maude is expected to perform. Logical unification determines if the parameterized

term on the left side of a given equation matches any sub-term the term currently being rewritten

anywhere within its syntax. If so, the parameterized term on the right side is filled in by the

unification and substituted for the matched sub-term.

In this chapter, we develop an alphabet that mimics the syntax of CCMP as well as a set of
1We will often use the terms “function symbol” and “operator” interchangeably in this chapter.
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equational rules that describe the run-time computations it performs at each step of an execution.

Maude then allows us to write terms that represent CCMP programs and their input, and from

those terms, it deduces the entire execution of the programs logically.

The K Technique Since Maude is a full-fledged logic programming language, we have a wide

variety of techniques at our disposal for defining the semantics of a programming language. We

chose the K technique [Roşu and Şerbănuţă, 2010], which we introduce briefly here. In K, we

represent program state as a configuration, which is a nested collection of cells, each of which records

information about the progress of the program at a given moment in time. For example, cells may

hold stores which map locations (read: “memory locations”) to values, environments which map,

e.g., variable names to locations, stacks which control the flow of execution, and even a continuation

representing the computation itself. All of these constructs are given function symbols in Maude,

and terms composed of them are rewritten in response to computational events.

The computation being executed is represented as a continuation, which is a nested stack of

operations with the next operation to perform at the top of the stack. As such, the continuation

sequentializes the computation being performed according to rules that break down a program’s

syntax into tasks. These rules are referred to as heating/cooling rules, and they operate as follows.

Say we have an expression in our language representing a computation such as a1 +a2 where a1 and

a2 are also arbitrary expressions in our language. A heating rule would rewrite the expression as

a1 y �+a2, moving a1 closer to the top of the stack. A cooling rule would rewrite the continuation

a1 y � + a2 back to a1 + a2. Both rules apply conditionally; the heating rule applies only when

a1 does not represent a computed value (e.g., a literal integer), and the cooling rule applies only

when it does. If we wish, we can further condition these rules to ensure that one of the arguments

is evaluated before the other, but a that’s language- and operator-specific decision.

In this way, computation tasks float to the top of the stack where they will be evaluated by

rules that define the semantics of the language’s operators in terms of primitive values, and results

settle back into place where they wait for their respective contexts to become the top of the stack.

All the while, the rest of the configuration is available to help effect and to be effected by these

computations.

85



1. function insertionSort(cmp) -> (a) {
2. for (var i from 1 to length a) {
3. var j = i - 1 ;
4. while (j >= 0 && cmp(a[j], a[j + 1]) > 0) {
5. var t = a[j] ;
6. a[j] = a[j + 1] ;
7. a[j + 1] = t ;
8. j -= 1 ;
9. }
10. }
11. return a ;
12. }
13.
14. function increasing(a, b) { return a - b ; }
15. function decreasing(a, b) { return b - a ; }
16. function absIncreasing(a, b) { return abs(a) - abs(b) ; }
17.
18. function sortAndPrint(cmp, a) {
19. var sorter = insertionSort(cmp) ;
20. write array2String(sorter(a)) + "\n" ;
21. }
22.
23. main() {
24. var a = @(6, 1, -4, 7) ;
25. call sortAndPrint(increasing, a) ; // -4, 1, 6, 7
26. call sortAndPrint(decreasing, a) ; // 7, 6, 1, -4
27. call sortAndPrint(absIncreasing, a) ; // 1, -4, 6, 7
28. }

Figure 7.1: Sorting a list of integers in CCMP.

7.1.2 General Purpose Programming

In this section we give an overview of the language’s syntax and semantics, restricting our discussion

to the general purpose programming constructs at the language’s foundation. We thereby aim to

a) set the stage for the introduction of LBP-specific operators and b) give the reader a sense for

how the K technique in RL formalizes the semantics of a programming language in the context of

familiar programming language constructs. We then move on to novel constructs in Sections 7.3.

We begin with an example program that illustrates the major concepts of the general purpose

portion of the language. The program in Figure 7.1 simply sorts an array of integers three dif-

ferent ways and prints the resulting array each time. The program is self-contained except for the
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Name Contents Description
k The continuation The stack of tasks representing the computation.
genv The global environment Maps identifiers to locations; only changes when

names of functions and models are added to it.
env The local environment Maps identifiers to locations; always contains

only those identifiers accessible by the task on
top of the k stack.

store The store Maps locations to values, like memory.
nextLoc An integer The next location to be allocated in the store.
stack The local execution

stack
Each element stores either the local environment
as it appeared when entering a new scope or a
loop continuation.

fstack The function stack Each element composed of local environment,
continuation, and local stack as they appeared
when a function was called.

stdin A string Provides the program’s standard input.
stdout A string Stores the program’s standard output.

Table 7.1: CCMP’s general purpose configuration cells.

array2String function whose details are left to the reader’s imagination. The output of the program

is summarized in comments adjoining lines 25, 26, and 27.

Configuration

A CCMP program is a list of function and model declarations, models being described in Section

7.3. Inside functions, local variables must be declared before they are used, and they remain live

within the lexical scope in which they are declared as delimited by curly braces. Variable names

declared in inner scopes shadow names declared in outer scopes, and the global scope contains only

function and model names (i.e., there are no global variables). CCMP programs can read input

provided as a string and can produce string output. In support of these basic operational aspects,

we declare a configuration with the cells described in Table 7.1.

Data Types and Common Operations

The native values manipulated by CCMP code include: a null value, Booleans, integers, floating

point values, strings, closures, arrays, and lists. Common operators from mainstream languages
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such as C++ and Java are provided for manipulating Booleans, integers, floating point values, and

strings, and the semantics provide for implicit type coercion when, e.g., an integer is added to a

floating point value.

Variables can be declared locally and used to store any value. Of course, values can also be stored

in arrays and lists, and all via the same assignment operator. This provides a good opportunity

for our first examples of semantic rewrite rules. An assignment statement treats its left hand side

(LHS) differently from its right hand side (RHS). The RHS is evaluated via the normal heating

and cooling rules, while the LHS waits for that evaluation to complete. Then the following rule

establishes a new context in which to evaluate the LHS expression:

〈κ1 = R;y κ〉k
〈l-value(κ1) y � = Ry κ〉k

This notation states that when the named elements of the configuration above the line are found

to be in the given form, they should be collectively rewritten as the form below the line. We shall

refer to the term appearing above the line as the head of the rule and to the term below as the

body. Logical unification determines if the head of the rule matches the configuration term currently

being reduced anywhere in its substructure, and this unification happens modulo associativity and

commutativity of the syntax comprising the configuration. Thus, it is necessary only to mention in

the head those cells in the configuration (or those portions of the syntax in general) that participate

in the rule.

A continuation (as represented above by κ1) wrapped in the l-value operator is rewritten by

rules that replace it with a location wrapped in the loc operator. For example, an identifier in this

context simply looks up its location in the local environment:

〈l-value(I) y κ〉k 〈M〉env
〈loc(M(I)) y κ〉k 〈M〉env

In this rule, I is an identifier, and M is a map. Maps are terms in the rewriting logic with user-

defined syntax and semantics designed specifically for use as a control structure in the semantics of a

programming language; they are not values in the CCMP language. Nevertheless, rules for accessing

88



and manipulating maps are defined side-by-side with CCMP’s semantics. Here, M represents the

local environment, and M(I) looks up the identifier, returning an integer location.

To complete the assignment, the result value R is written to the specified location:

〈loc(J) y � = Ry κ〉k 〈M〉store
〈κ〉k 〈M [J 7→ R]〉store

where J is an integer, M now represents the store (since variables can play different roles in each

new rule), and the syntax M [J 7→ R] evaluates to a map in which the value associated with J has

been replaced with R.

Closures in CCMP are only created when either a function is declared in the global scope or when

a function is partially applied in a local scope. In the former case, there is no extra environment

to close over; in the latter, only the arguments in the current and previous partial applications of

this function are closed over. Functions are applied (partially; see below) with the syntax C(list)

where C is a closure and list is a comma delimited syntactic list of values (as opposed to a list value,

discussed below).

Array values consist of a location and an integer length accessible via the length operator. Empty

arrays can be allocated with the syntax new array[int], and arrays filled with specified values can be

allocated with the @(list) syntax in which list is a comma delimited syntactic construct as opposed

to a list value. An example of the latter can be found on line 24 of Figure 7.1. Either way, contiguous

locations in the store are allocated for the elements of the array. The array access syntax A[J ],

where A is an array value, can then either be evaluated to the corresponding value in the store, or,

in l-value context, to the location of that element. See examples of the l-value on lines 6 and 7 of

Figure 7.1.

Lists work just like lists in Lisp [McCarthy, 1960]. First of all, the nil operator represents the

empty list, and operators first and rest which are analogous to car and cdr are provided. first

and rest can also be evaluated in l-value context. Next, the rough equivalent of cons, which takes

any two values as arguments in Lisp but whose second argument must be a list value in CCMP, is

the infix, binary operator ++. When evaluated, a pair of locations is allocated in the store for the

two arguments, and the operator is replaced at the top of the continuation stack with the resulting
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list value:
〈R ++Ly κ〉k 〈M〉store 〈J〉nextLoc

〈list(J) y κ〉k 〈M [(J„ J +int 1) 7→ (R„ L)]〉store 〈J +int 2〉nextLoc

In this rule, R is a literal value, L stands for a literal list value such as list(J), κ is a continuation,

M is a map, and J is an integer. Like the map, a K-list is a control structure whose user defined

double comma syntax distinguishes the term from syntax of CCMP involving lists delimited by single

commas. The syntax M [K-list1 7→K-list2] extends the map assignment syntax seen previously to

work in a pairwise manner with two K-lists. Finally, note that mathematical addition is represented

by the operator +int to distinguish it from the + operator which is part of the syntax of CCMP.

Control Flow

CCMP has the usual flow control elements; e.g., if statements, for and while loops, and a return

statement. The for statement on line 2 of Figure 7.1 illustrates one form of the looping construct

in which we find expressions representing bounds on the induction variable after the from and to

keywords. In that example, i will take each successive integral value from 1 (inclusive) to length

a (exclusive). In general, a for loop is merely syntactic sugar for a while loop and a few extra

variable declarations. As such, the rewrite rules for for loops simply replace them in this way,

without needing to consult the rest of the configuration.

Functions

The syntax of function declaration should be straight-forward given the examples in Figure 7.1, with

the possible exception of the right arrows. These help effect partial function application, which is

partially supported in the following sense. The argument list of a function may be partitioned into

sections such that each section represents the arguments of a function returned by supplying values

for the arguments in the previous section. These sections must be declared explicitly, and all values

for all arguments in a section must be supplied when invoking that section. An example of partial

function application happens on line 19 of Figure 7.1.

When a function is declared, a closure representing it is stored in the global environment in

association with the function’s name. Finally, there is also a special main() function taking no
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arguments in which execution always begins.

7.2 LBP Preliminaries

CCMP offers several new primitive value types that directly support LBP design principles. The

most important is the feature on which all other new types are based. Features are inspired by

propositional logic, so we review a few principles thereof in Section 7.2.1 before delving into CCMP

details.

7.2.1 Propositional Logic Extended

Usually, propositional logic consists of an alphabet of variable names and a set of familiar Boolean

connectives. For our purposes in CCMP, we will extend propositional logic with constant symbols

standing for objects (as opposed to Boolean truth values), a single unary function A, and a single

binary predicate E2. A term is either a constant symbol or an application of A. We also introduce

the notion of an interpretation, which is a pair (D, ·I) composed of a set D ⊆ D of objects from a

domain D and a function ·I that maps predicate, function, and constant symbols to elements in D.

When CCMP interprets a formula, D will contain strings, attribute symbols, and implementa-

tions of A and E. The interpreted function AI : S → Amaps from the set of all strings S to the set of

all attribute symbols A. Regarding the relation EI , our intention is to understand it as an assertion

that its two arguments are equivalent, and so it will always be the case that ∀ y ∈ D, (y, y) ∈ EI ,

however there will be additional tuples detected by user code. Further discussion of this issue is

deferred until Section 7.3.

In addition, we also introduce two “propositional quantifiers” which connect the elements of a

list of propositional formulae. Formally, if i is an integer, ϕ ∈ P is a propositional formula from the

set of all such formula, and L is a (possibly empty) list of propositional formulae, then atleast i (L)

2In fact, E replaces all Boolean variable names.
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and atmost i (L) are also propositional formulae whose semantics are defined inductively as follows:

(atleast i (L))I ≡ i ≤ 0 if L is empty

(atleast i (ϕ,L))I ≡


true if i ≤ 0

(atleast i− 1 (L))I if i > 0 ∧ ϕI

(atleast i (L))I if i > 0 ∧ ¬ϕI

(atmost i (L))I ≡ i ≥ 0 if L is empty

(atmost i (ϕ,L))I ≡


false if i < 0

(atmost i− 1 (L))I if i ≥ 0 ∧ ϕI

(atmost i (L))I if i ≥ 0 ∧ ¬ϕI

These quantifiers allow a linearly sized representation for concepts that would normally occupy

exponential notational space in traditional propositional logic.

7.2.2 Features

CCMP uses propositional logic to help specify features. A feature F ∈ F ≡ P×R is a pair which we

say is composed of a propositional “name” and a real value. We also define the strength ςI : F → R

of a feature (ϕ, r) under an interpretation I as

ςI((ϕ, r)) ≡

 r if ϕI

0 otherwise

In this way, propositional logic is used simultaneously to help determine a feature’s strength and

for distinguishing it from other features. The latter is useful when features are used to index the

learned parameters in models, as discussed in Section 7.2.5. We will also be frequently referring to

a propositional formula ϕ as a feature when it is clear from context that it can be viewed as (ϕ, 1).

We do this especially frequently in the context of Feature Generation Functions. If a distinction

needs to be made, we can also refer to the latter form as a real valued feature.

Following [Cumby and Roth, 2003] who developed a very similar line of reasoning for a restricted
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form of FOL, we can also view a feature as a function χ : I → {0, 1} that maps an interpretation

I ∈ I to either zero or one (false or true, respectively) indicating whether or not the feature’s

propositional formula is true under the interpretation. A feature whose propositional formula is

true under I is said to be active in I. This perspective is useful for defining Feature Generation

Functions, the topic of the next section.

7.2.3 Feature Generation Functions

The features designed by the CCMP programmer (and vectors thereof; see Section 7.2.4) will serve

as the input to learning and inference algorithms. Since we wish to admit features in the infinite

feature space, and because explicitly writing in our code the strings we expect to find in our data

makes our code domain specific, we now desire a mechanism for determining which features are

active in a given interpretation automatically. Feature Generation Functions (FGFs) are designed

to serve exactly this purpose.

Once again following [Cumby and Roth, 2003], an FGF is a function G : I → 2P that maps

an interpretation to a set of features G(I) ⊆ P such that ∀ϕ ∈ G(I), ϕI = 1. Note that the

definition of an FGF makes no claim about how many or what types of features will be returned;

these decisions are in the programmer’s hands. We also define the extension of an FGF G as the

set of all formulae that G returns for any interpretation: ext(G) ≡
⋃
I∈I G(I). In general, |ext(G)|

can be infinite even when G(I) is not.

Note that any propositional formula can be viewed as an FGF whose extension has cardinality

1. The feature either generates itself or not, depending on the interpretation.

We now define a calculus over FGFs using connectives that are analogs of the usual propositional

connectives. First, an atomic FGF is a function Ĝ : I → 2P such that ∀ϕ ∈ Ĝ(I) we have

ϕ ≡ E(t1, t2), where t1 and t2 are terms. Next, if G1 and G2 are both FGFs, then G1 ∧G G2 is also

an FGF defined as follows:

(G1 ∧G G2)(I) ≡ {ϕ1 ∧ ϕ2 |ϕ1 ∈ ext(G1) ∧ ϕ2 ∈ ext(G2) ∧ (ϕ1 ∧ ϕ2)
I}

In other words, all combinations of features from the cross product of the extensions of the two FGFs
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are considered under the given interpretation to determine the range of the conjunction. Not to

worry, though; because of the semantics of propositional conjunction, the resulting set is constructed

quickly:

(G1 ∧G G2)(I) = {ϕ1 ∧ ϕ2 |ϕ1 ∈ G1(I) ∧ ϕ2 ∈ G2(I)}

However, the picture is not so rosy when we try to define disjunction and negation connectives

analogously. The resulting FGFs will produce infinite sets for non-trivial cases. So, we define

a conditioning operator denoted |C for a set C of propositional formulae of interest that, when

applied to an FGF G, filters out formulae produced by G when they are not also found in C. Then,

in practice, when we desire the FGFs G1 ∨ G2, or ¬G we will settle for (G1 ∨ G2)|C or (¬G)|C ,

respectively, for some set C.

To conclude our discussion on FGFs, we note that in the context of FGFs and the FGF con-

nectives defined above, a formula behaves similarly to a propositional variable in the context of the

usual Boolean connectives. The only difference is that their truth values may be dependent on each

other, whereas separate propositional variables would not exhibit such a dependency. Moreover,

the semantics of the FGF connectives when applied only to formulae coincides exactly with the

semantics of the usual Boolean connectives. Therefore, the CCMP language need not distinguish

between between the two types of connectives; we instead supply only the FGF connectives and

implicitly coerce our propositional formulae to be FGFs as needed.

7.2.4 Sparse Structured Vectors

CCMP provides a native vector data type used for associating real values with features. Vectors are

sparse, meaning that they only store a value for an element if that value differs from the default,

which is also kept as a value in the vector. Any value kept in a vector can be overwritten with a

new value at the programmers behest. Vectors are also structured, meaning that instead of a flat,

array representation, they take the form of a hierarchical map of maps which can be organized by

feature or by arbitrary identifier into sub-vectors. There are no restrictions on the formulae used to

effect this hierarchical organization. In particular, FGFs may also be used as keys.

At the lowest levels of the hierarchy, we have maps from integers to real values (which should
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be implemented as arrays in an implementation). These integers represent the indexed input com-

ponents of features in a model. Here, we see the first sign that efficient feature extraction has

been built into the language; we will see in Section 7.3 that the indexing operation itself is also

built-in. The output components of features in the model are the keys at the next level up in the

hierarchy, the values being the sub-vector maps from the lower level themselves. Semantically, this

organization implies that the output feature or FGF used as a key was individually conjuncted with

each of the extracted input features in its associated sub-vector. Higher levels in the hierarchy will

use identifiers as keys, and these identifiers will represent the names of sub-models in the model

hierarchy described in Section 7.2.5.

This vector data structure is used both as the weight vector in a model and as the example vectors

extracted from data. Only example vectors will use the upper levels of the hierarchy where identifiers

are keys. In addition, feature keys appearing in a weight vector will always be propositional formulae.

7.2.5 Models

A model in CCMP is an object that coordinates all the information necessary to perform feature

extraction, learning, and inference. First and foremost, it is a collection of learned parameters

collectively referred to as the weight vector and indexed by features and constraints. Thus, math-

ematically, it represents the optimization problem in Equation (3.2). However, there is not yet

enough information present to run an inference algorithm that solves the optimization, since the

input is not present.

In addition to the learned parameters, it holds the FGFs that compute {φi} and {cj} from raw

data, manages the auxiliary information that supports efficient feature extraction, and provides an

interface to the rest of the program that abstracts away these details from the programmer. Thus,

similar to LBJ, task-specific feature extraction code resides side-by-side with learned parameters.

Unlike LBJ, it will be the programmer’s responsibility to execute the feature extraction code before

invoking either a learning or an inference algorithm. Furthermore, CCMP introduces a model

composition phase in between the point where the model receives input data and the execution of

feature extraction. The rest of this section describes the model objects provided by CCMP for these
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Identifier: Names this model to other models that may contain it.
Sub-models: A set of instantiated models declared as sub-models of this instantiated

model.
CM constructor: A lambda value representing the function that constructs the next phase

of instantiation for the model (namely, the conditioned model).
Label lexicon: A pointer to the label lexicon.
Feature lexicon: A pointer to the feature lexicon.
Weight vector: A pointer to the weight vector.

Table 7.2: A summary of the data managed by an instantiated model.

different execution phases.

Instantiated Models

Before one can use a model, one must first instantiate it. Once instantiated, an instantiated model

(IM) object represents a learned function; thus, it is ready to accept input data. However, since

it lacks an inference algorithm, the result it produces will not be computed values of the output

variables. Instead, its task will be to condition the inference problem on the received input using

code provided by the programmer (see Section 7.3). At that point, the x in Equations (3.1) and

(3.2) will be considered fixed, and all that remains is to pick values for y. The result of applying

an IM, therefore, is a conditioned model, precisely the topic of the next section.

An IM is a 6-tuple consisting of the information summarized in Table 7.2. We notice first that

IMs adopt other IMs as sub-models. These links from parent to child models must form a DAG. If

a given IM object M1 is a sub-model of another IM object M2, then M1 will have an identifier used

by M2 to keep its sub-models straight. An IM object also acts in code as the lambda value that

constructs a conditioned model. This is discussed in more detail in Section 7.3.

Finally, when an IM object is itself instantiated, space is allocated for the weight vector and two

lexicons, to which the IM keeps pointers. Lexicons are simply maps that keep track of every feature

or label that has been encountered by the model during training. In the specific case of the feature

lexicon, the map associates the name of each encountered feature with an integer index. These

integers are used to index the weight vector, which can then be implemented as an array at the

lowest levels of its hierarchy (see Section 7.2.4). Dot products between vectors composed of these
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Output variables: A list of symbols representing the declared output variables.
FGFs: A map in which the keys are sets of output variables, and each key is

associated with a list of FGFs.
Constraints: A list of propositional formulae representing constraints.
Sub-models: A map in which the keys are sets of output variables, and each key is

associated with a list of CMs whose output variables have been bound
to this CM.

Binding: A map between the output variables of the parent CM (assuming this
CM is a sub-model) and this CM.

IM: The instantiated model from which this CM was created.

Table 7.3: A summary of the data managed by a conditioned model.

indexes are found in the innermost loops of learning and inference algorithms, so implementing the

weight vector with arrays (as opposed to maps, for instance) yields a big advantage in performance.

CCMP provides the additional advantage of managing the details for the programmer.

Conditioned Models

A conditioned model (CM) object is instantiated with the data that encapsulates the input to our

inference optimization problem (i.e., the x in Equation (3.2)). A CM represents an instance of that

inference problem and touts the facility to incorporate itself into other inference problem instances

(i.e., other CMs) as a sub-model. The ensuing CM sub-model graph is a DAG just as it was for

IMs, and the two DAGs are created in parallel. A CM C1 can become a sub-model of another CM

C2 if and only if the IM M1 from which C1 was instantiated is a sub-model of the IM M2 from

which C2 was instantiated. In this case, however, the relationship between parent and sub-model is

defined in terms of specific output variables in the parent.

A CM is another 6-tuple as described in Table 7.3. First of all, a conditioned model keeps

an account of its output variables, as any inference problem representation should. Next, a CM

keeps the FGFs that produce the features in our inference problem organized according to the set

of output variables involved in those features. This organization will make it easier to determine

which features are involved in a “partial query” as described in Section 7.3. The CM also keeps a

list of propositional constraints handy for, perhaps, analysis by an inference algorithm that wants

to handle constraints separately from the rest of the model.
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The next two elements in the CM’s 6-tuple describe its relationship to with other CMs. First, it

maintains a set of sub-models that participate in defining the structure over its own output variables,

again organized by the set of output variables with which the sub-model associates. Second, if this

CM is a sub-model of another CM, it will contain a map from its parent’s output variables to its own

so that it understands the queries passed down to it about its parent’s output variables. Finally, a

CM keeps a pointer to the IM from which it was instantiated.

7.2.6 Structured Examples

A structured example essentially encapsulates the same information as a conditioned model. The

difference between the two is that in a structured example, we replace the collection of FGFs with

structured vectors of indexed features, and we replace the collection of sub-models with a collection of

sub-examples. Thus, we may think of a structured example as a CM that has undergone the feature

extraction process. As such, operators supporting learning and inference applied over structured

examples will be more efficient than if those same operators were applied over the CMs.

The reader may then be left wondering why CMs exist at all; shouldn’t we always move straight

to the structured example? The reason for both to exist is that the decision to extract features

can have implications on the learned model. Recall that an instantiated model contains a feature

lexicon. This lexicon serves not only to index features, but to inform the weight vector as to how

much space it should allocate. These are issues over which the programmer will require precise

control in order for his structured model to scale well. When extracting features, the programmer

must choose whether or not previously unseen features should be added to the lexicon. This decision

is best left outside the modeling code in which CMs compose other CMs, since that code is not

aware of the intended purpose of its input. The programmer will then indicate whether the fully

instantiated conditioned model shall be used for training (extending the lexicon) or merely testing

(lexicon remains unchanged) outside of the modeling code.
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Name Contents Description
Y Output variables A list of output variable symbols.
FGF Feature generation

functions
Functions generating features associated with
the IM’s learned parameters.

con Constraints Features associated with user specified weights
in the IM.

subm Model substructure CMs describing further the relationships among
a specified set of output variables.

Table 7.4: Configuration cells nested inside the cmodel cell.

7.3 LBP Operators

Having introduced the foundational boilerplate of the language, we now turn to its novel LBP

enhancements. In this section, we describe the syntax and selected semantics of the new value types

described in Section 7.2.5. This involves several new operators as well as new configuration cells,

and we begin with the latter.

7.3.1 New Configuration

Two new cells are added to the top level of the configuration to support the composition of con-

ditioned models. First, the cmodel cell is the only nested cell in CCMP’s configuration; it holds a

set of new cells that collectively describe a single CM as it is being composed. These sub-cells are

summarized in Table 7.4. Second, the cstack cell comes into the picture when a new CM must be

composed during the construction of another CM. In this case, the entire contents of the cmodel cell

are pushed on top of the cstack as a single element where they wait to be replaced after the new

CM’s construction is complete.

7.3.2 Composing Features

Recalling the discussion in Section 7.2.1, in order to compose features, we need strings and attributes,

and we already have strings. So, CCMP now provides two operators for creating attributes. The

first is the attr operator, which is the interpretation of the lone function A in our propositional

logic. This operator does not, in fact, have any semantic rules associated with it; it serves merely
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to wrap a string.

Additionally, we have the unary <> (read: diamond) operator which creates an output attribute

with its argument serving as its name. We must be very careful to note here, however, that the

application of this operator does not introduce a new output variable into a CM. It is merely a

building block value for composing features, which themselves are not necessarily part of a model

either. As we will see, CCMP allows features (whether they involve output attributes or not) to

represent knowledge a model has already acquired as well as queries that ask how well specific new

knowledge would fit with the existing model.

With attributes and strings at its disposal, CCMP can now provide an operator that stands

for the interpretation of our lone predicate E. The binary, infix operator :: expects each of its

arguments to be either a string or an attribute. Once it has these, the term R1::R2 is rewritten to

R1 ::F R2, denoting a propositional atom value.

From here, the language begins providing operators that build larger and larger propositional

formulae, all rewritten to formula values, analogously to ::, that can be stored in variables, passed to

functions, etc. The usual Boolean connectives are given: negation (!), conjunction (/\), disjunction

(\/), implication (=>), and double implication (<=>). Additionally, operators inspired by FOL are

provided to procedurally construct propositional formulae with a concise amount of code. For

example, if we have an array value stored in variable a which contains strings, we may write:

var f = exists (var i from 0 to length a) attr("word") :: a[i] ;

which is equivalent to

var f = exists (var s in a) attr("word") :: s ;

and both are equivalent to

var f = false ; for (var s in a) { f \/= attr("word") :: s ; }

where x \/= y is syntactic sugar for x = x \/ y. The semantics of propositional formula values

include simple patterns that reduce away the Boolean truth value false originally stored in f in the

last example.

100



Boolean formulae can be used to create real valued features simply either by applying the

overloaded :: operator with a numerical value in the second argument, or by multiplying the

formula value by a scalar with the overloaded * operator.

7.3.3 Composing FGFs

As described in Section 7.2.3, the connective operators we provide for features are, in fact, FGF

connectives. Therefore, the examples we just saw above are all FGFs, though not very exciting

ones. The most interesting FGFs provided by CCMP involve output attributes. In particular, the

language provides for the type coercion of an output attribute to an FGF when in the context

of FGF connectives. In particular, and since it is our intention to regard the predicate E as an

equivalence relation (see Section 7.2.1), an output variable V would be coerced to the FGF

G(I) = {E(V, x) |x ∈ S ∧ (V, x) ∈ EI}

if it were found, for example, conjuncted to some other FGF. This facility enables us immediately to

describe models that jointly model discrete output variables by simply conjuncting them together.

There is also an FGF denoted <in> that generates every possible input feature.3 It is an error

to attempt to install this FGF in a model; it can only be used in queries.

7.3.4 Composing Models

Models are composed inside model declarations, whose syntax is similar to that of a function decla-

ration. See Figure 7.2 for an example. We have the keyword model followed by an identifier naming

the model, followed by lists of arguments in the partial function application syntax described for

functions. However, models must have exactly two sections in this argument list. Applying the

first corresponds to the instantiation of the model into an IM, and applying the second conditions

the IM, creating a CM. In the body of the model declaration, we have at our disposal four types

of operators that assist us in describing the CCM optimization problem. We now discuss them in

turn. Keep in mind that although the model in Figure 7.2 only contains statements that involve
3Theoretically, that is.
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1. model CPT() -> (w) {
2. out oneBefore = discrete ;
3. out currentTag = discrete ;
4. fgf oneBefore /\ currentTag ;
5. fgf currentTag /\ attr("form") :: w ;
6. constraint : w == "," => currentTag :: "," ;
7. constraint : w == "." => currentTag :: "." ;
8. }

Figure 7.2: The CCMP specification of a model that summarizes the conditional probability tables
of a first-order HMM. We include also some simple, hard constraints for exposition.

these operators, the rest of the language is also available.

Output Variable Declarations

Output variable declarations look like assignment statements, but are introduced with the keyword

out. On the left hand side of the assignment is an identifier, and on the right is either of the keywords

boolean or discrete, possibly followed by square brackets surrounding a list of expressions evaluating

to integers. This syntax specifies the type of our output variables, and allows for multi-dimensional

arrays of them as well. Only when an output variable is declared in this way will it become part of

the model at inference-time.

The boolean output variable type enables the description of models of the form described in

Section 3.2.1 as conjunctions between the output variable and all features derived from input. In

general, a boolean output variable taking the value false plays the same role as the truth value false

alone. Thus, it would make all the aforementioned conjunctions inactive.

Semantically, when an output variable declaration is encountered, we simply add the specification

of every individual variable to the list in the Y cell of the configuration. The variables in any arrays

are enumerated therein.

FGF Declarations

FGF declarations declare which (types of) features will index the learned parameters of the model.

Real and propositional features and FGFs are supported with one caveat: it must be possible to
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partition the top level conjunction describing the feature or FGF into two clauses, one of which

only contains atoms that involve at least one output attribute, and the other of which only contains

atoms that do not. This restriction makes it possible to pre-extract the input-only portions of our

features before any learning or inference takes place.

The formal semantics handling this declaration includes rules that effect the partitioning alluded

to above, compute the set O of output variables involved in the FGF, and install the partitioned

FGF in the FGF configuration cell’s map under the key O. Note that the structured vector described

in Section 7.2.4 will be very convenient for storing these partitioned FGFs in which the input portion

has been indexed. The semantics of the vector are that an output-only FGF partition appearing

as a key in the vector is implicitly conjuncted individually with each of the indexed features in the

associated sub-vector to form an implicit, flat vector of conjunctive features.

Constraint Declarations

Similar to feature declarations, constraint declarations accept an FGF argument, but with a different

caveat. This time, every atom in the FGF must contain at least one output variable. Note that the

constraints in Figure 7.2 do satisfy this requirement, because the == operator reduces to a Boolean

truth value immediately after receiving the input. Thus, the constraint on line 6, for example, is

either satisfied trivially when w 6= ",", or else it becomes simplified to currentTag :: ",".

A constraint declaration can also take a floating point argument before its colon, and when it

does, the semantic rules that handle constraints install the value in the model’s weight vector in

association with the constraint’s FGF. When the floating point argument is omitted, the constraint

is hard meaning that its negation is installed in the weight vector associated with a weight of −∞

(see Section 3.1).

Composing Models from Models

The centerpiece of CCMP’s model composition framework is the ability to co-opt the entire structure

of one model into another at a specified point in the larger model’s structure. It enables separate

models to participate in joint inference together regardless of how they were trained while enabling
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1. model HMM(model cpt) -> (sentence) {
2. out dummy = discrete ;
3. out tags = discrete[length sentence] ;
4. if (length sentence > 0) {
5. dummy, tags[0] -- cpt(sentence[0]) --> <> oneBefore, <> currentTag ;
6. for (var i from 1 to length sentence) {
7. tags[i - 1], tags[i]
8. -- cpt(sentence[i]) --> <> oneBefore, <> currentTag ;
9. }
10. }
11. }

Figure 7.3: Connecting CPTs together in the global HMM.

programmers to organize their modeling code in a modular, reusable way.

The example code in Figure 7.3 models a sequence tagging task in a model named HMM and

intends to use the model CPT from Figure 7.2 as its weight vector. Note that while CPT always

has exactly two output variables, the number of output variables in HMM varies with the size of

the input. Thus, CPT will be applied repeatedly across the sequence. This, in fact, will give HMM

an advantage over an approach which allocates new learned parameters for every position in the

sequence, assuming that there exist local patterns that the smaller model can capitalize on.

In any case, the first step is to notify HMM that it will be receiving a sub-model in one of its

arguments using the model keyword. This must happen in the first section of arguments, since it is

the IM which needs to label its sub-models. Next, we use the syntax that looks like a long arrow

labeled by a CM exemplified on lines 5 and 8 of Figure 7.3 to establish the following. When CPT

is conditioned at the given point in the input sequence, the structure over CPT’s output variables

named on the right hand side of the arrow also applies to HMM’s output variables named on the left

hand side of the arrow. This means all the same features, constraints, and sub-models (recursively)

apply and those features access CPT’s IM. We say that a subset of HMM’s output variables have been

bound to CPT’s output variables.

Semantically, when one of these statements is encountered during the composition of HMM’s CM,

our rewriting rules add CPT’s CM to the collection of CMs in the sub-models cell of the configuration

after imbuing it with an output variable binding map. This map points in the same direction as the
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arrow in the syntax, so that CPT’s CM will understand queries over HMM’s output variables. Thus,

the true semantics of a model composed from other models is realized only in the context of the

operations we apply on them. See Section 7.3.6 for a discussion of these.

7.3.5 Extracting Structured Examples

At the user’s behest, after an entire CM with all of its substructure has been instantiated, a struc-

tured example can be extracted from the CM with one of two built-in functions. The extract

function creates the structured example without modifying the model’s feature lexicon, while the

extract+ function updates the lexicon with mappings for the new features encountered. This choice

is made by the programmer outside of the modeling code.

In either case, the hierarchical structure of the extracted example runs parallel to that of the

CM. It retains all of the CM’s structure except for the input features looked up in the lexicon, as

well as the identifiers assigned to the sub-models’ associated IMs from when those IMs were passed

to their parent models in arguments labeled model. Thus, the structure of the example will line up

with the IM hierarchy.

7.3.6 Learning and Inference

Both learning and inference are done with respect to an IM and structured examples. Learning

algorithms wish to update the model’s weight vector(s) via some function of the example’s vector(s).

Inference algorithms wish to find settings of a single example’s output variables such that its dot

product with the weight vector is maximized. Their task may be more efficient if they can somehow

take advantage of the structure present in the example’s features and constraints. To support

these enterprises, CCMP supplies both high level operators that handle large portions or all of the

structure in IMs and examples automatically, and low level operators for picking the structure apart

and examining it.

To illustrate our discussions of these operators, we provide Figures 7.4 and 7.5. Figure 7.4

is a code snippet from an implementation of the Viterbi inference algorithm. The code pictured

computes optimal scores of assignments to the output variables in a left-to-right fashion across the
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1. function viterbi(m, x) {
2. var ov = outs x ; // retrieve Y in an array
3. var vals = new array[length ov] ; vals[0] = @( "" ) ;
4. var prevTable = @( 0 ) ;
5.
6. for (var i from 1 to length ov) {
7. vals[i] = m valuesof ov[i] ; // retrieve the values of a Y in an array
8. var n = length vals[i] ;
9. var currTable = new array[n] ;
10.
11. for (var j from 0 to n) {
12. currTable[j] = -infinity ;
13. for (var k from 0 to length prevTable) {
14. var q = ov[i - 1] :: vals[i - 1][k] /\ ov[i] :: vals[i][j] ;
15. var score = prevTable[k] + m . x(q) ;
16. // compute score in the model associated with a particular output
17. // variable assignment.
18.
19. if (score > currTable[j]) { currTable[j] = score ; }
20. }
21. }
22.
23. prevTable = currTable ;
24. }
25. }

Figure 7.4: A snippet of code from an implementation of the Viterbi inference algorithm. On line
14, a feature asserting that two consecutive output variables take specific values is composed. On
line 15, the example uses that feature as an interpretation to instantiate its FGFs into a vector.
The dot product of that vector and the model’s weight vector is then taken.

sequence. Code that reconstructs the optimal decisions made along the way afterwards has been

omitted. This example is given to show how a structured example can be queried for the portion

of its structure corresponding to a selected subset of the output variables as represented by the

returned vector. The score of the model on that substructure is then a simple matter of taking

the dot product of that vector with the model’s weight vector. The ability to compute scores on

selected substructures in this way is crucial for dynamic programming algorithms such as Viterbi.

Figure 7.5 is an implementation of Collins’ Perceptron [Collins, 2002] which updates the model

in response to a single training example. The same querying operation is performed, but this time

using complete assignments to all output variables. One such assignment representing gold labels
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1. function collins(infer, r) -> (m, x, labels) {
2. m <+= r * (x(labels) - x(infer(m, x))) ;
3. }

Figure 7.5: Collins’ Perceptron implemented to update the model in response to a single training
example.

was given in the training data, whereas one was computed by an inference algorithm such as Viterbi.

High Level Operators

The first high level operators we consider explore a model’s ability to assess the utility of a potential

assignment to the output variables. First, we have the structured example’s partial query facility, as

illustrated in the above examples. This operation takes an output variable assignment as represented

in FGF syntax and returns a structured vector containing only those features from the example’s

extracted vectors that are active under that assignment. In this way, the FGFs acting as keys in the

example’s extracted vectors view the output variable assignment as an interpretation from which

features can be instantiated. This process applies recursively over the example’s sub-examples,

which make use of their binding maps to instantiate their own features in response to the query.

The vector produced over that substructure will include higher levels in its hierarchy indicating

which IM a given sub-vector indexes using the same identifier that was originally labeled with the

model keyword in the argument list of the parent IM.

Once a vector has been extracted in this way, the model can pass judgment on it by taking its

dot product with the weight vector. This process is also recursive over the structures of the IM

and the structured vector. The semantics of this operation deconstruct the vector according to its

substructure as described above so that dot products between sub-models and sub-vectors line up

appropriately.

In Figure 7.5, the querying operation described above is combined with some simple linear

algebra operators to implement Collins’ Perceptron. Here, we see that structured vectors can be

added to each other and multiplied by scalars, and the <+= operator modifies a model’s weight vector
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by adding in the expression on the right hand side.

Finally, a model’s weight vector can also be queried with an arbitrary FGF. The result is a

slice of the weight vector containing all and only those features in the extension of the query FGF.

This operator is syntactic sugar, to be sure, since there are already low level operators for taking

a vector apart feature by feature, but it’s particularly convenient for updating large portions of

a weight vector in a non-linear way. We need this facility, for example, if we train an HMM by

counting feature occurrences instead of running Collins’ Perceptron, and we then wish to convert

those feature counts into conditional probabilities.

Low Level Operations

The lower level operations on examples and models are essentially used for examining their compo-

nents and traversing their substructure. For example, the output features and constraints can be

returned to the programmer in arrays. Operators that identify the connectives used in a proposi-

tional formula and extract its children formulae are also provided. The model’s weight vector can

be examined in a similar way. These operators make possible an implementation in CCMP of the

algorithm that generates linear inequalities for ILP inference described in Section 4.5.2.

7.4 Test Cases

In this section, we take a more detailed look at some structured learning based programs imple-

mented in CCMP. The sequence tagging task will continue to be used as our running example, so

some of the codes we’ll be investigating here have already been introduced in the previous section.

We start by presenting a framework within which our learned models will be evaluated, and we then

discuss three different training and inference paradigms that all apply to it. Our point of emphasis

here is that our specified model is truly independent of both the learning and the inference algorithm

and that this gives us the flexibility to engineer solutions to structured learning problems that scale

well.
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1. main() {
2. var data = parseAll() ;
3. var c = train(data[0]) ;
4. var total = 0 ;
5. var correct = 0 ;
6.
7. for (var sentence in data[1]) {
8. var predictions = c(sentence[0]) ;
9. for (var i from 1 to length predictions) {
10. if (sentence[1][i] == predictions[i]) { correct += 1 ; }
11. total += 1 ;
12. }
13. }
14.
15. write "(" + correct + " / " + total + ") = " + correct / (1.0 * total) ;
16. }

Figure 7.6: Testing Framework: A simple program that trains and evaluates a sequence tagging
model.

7.4.1 Testing Framework

Our testing framework is a CCMP program that parses annotated sentences from the Penn Tree-

bank [Marcus et al., 1993] and assesses the performance of a learned model’s part-of-speech tagging

predictions on them. The source code for this program is listed in Figure 7.6. On line 2, a prede-

fined quantity of training and testing sentences are parsed into lists using a function whose code

is omitted. Then on line 3, the list of training sentences is passed to an as yet undefined function

named train. The train function is assumed to return a prediction function that takes an array of

strings representing the words in a sentence as input and returns an array of strings representing

their part-of-speech tags as output. We can see that returned function on line 8, just before its

predictions are compared to the labels found in the dataset.

Also provided by this testing framework is a function named classifier that helps other codes

implement their train functions by constructing the final prediction function. The source for

classifier is listed in Figure 7.7. Its first set of arguments are assumed to represent a sequence

tagging model and a function that performs inference over that model on an extracted example. The

results of the inference function come back in FGF syntax so that they are more useful to learning
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1. function classifier(m, infer) -> (example) {
2. var predictions = childrenof infer(m, extract(m(example))) ;
3. var result = list2Array(predictions) ;
4. for (var i from 0 to length result) { result[i] = # result[i] ; }
5. return result ;
6. }

Figure 7.7: Testing Framework: A function that extracts the predictions made by an inference
algorithm and returns them in an array.

algorithms, classifier must use low level CCMP operators to extract the model’s predictions and

return them in an array. The function list2Array called on line 3 is provided in CCMP’s standard

library.

Finally, we draw the reader’s attention once more to Figures 7.2 and 7.3 which specify the models

that will be learned by all three approaches discussed below. The first two approaches also use the

Viterbi inference algorithm in Figure 7.4 to make predictions using their instances of those models.

The final approach will define its own algorithm for that purpose.

7.4.2 Classical HMM

A classical, first-order Hidden Markov Model implementation should stay true to the acronym

name of our CPT model by defining its learned parameters as conditional probabilities. The features

generated by the FGFs on lines 4 and 5 of Figure 7.2 should correspond to an HMM’s transition

and emission tables respectively. In the first instantiation of our testing framework, we show that

CCMP gives the programmer full control over his CCM’s objective function by defining a train

function that normalizes the model’s learned parameters after the training data has been processed.

First, the loop beginning on line 6 serves to count each conjunctive feature in the dataset. We

next recall that P (A = a|B = b) = P (A = a ∧ B = b)/(
∑

b′ P (A = a ∧ B = b′)) for random

variables A and B. So, to normalize the weights in the CPT model into conditional probabilities,

all that remains is to sum the appropriate groups of counts and divide each count by the sum in

which it participated. The normalize function achieves this using FGFs to select vector slices of our

weight vector as well as the <:= operator which overwrites a vector slice with new values. Finally,
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1. function train(data) {
2. var cpt = CPT() ;
3. cpt default -15 ;
4. var tagModel = HMM(cpt) ;
5. for (var sentence in data) {
6. var x = extract+(tagModel(sentence[0])) ;
7. tagModel <+= x(labelOuts(x, sentence[1])) ;
8. }
9.
10. call normalize(cpt, <> oneBefore, <> currentTag) ;
11. call normalize(cpt, <> currentTag, <in>) ;
12. return classifier(tagModel, viterbi) ;
13. }
14.
15. function normalize(cpt, ov, g) {
16. var tags = cpt valuesof ov ;
17. for (var t in tags) {
18. var total = 0 ;
19. var v = cpt[ov :: t /\ g] ;
20. for (var o in keys v) {
21. for (var i in keys v[o]) { total += v[o][i] ; }
22. }
23. cpt <:= v map divideAndLog(total) ;
24. }
25. }
26.
27. function divideAndLog(d) -> (n) { return log(n / d) ; }

Figure 7.8: The classical HMM fits into our testing framework by counting occurrences of conjunctive
features and then normalizing those counts.

since a CCM’s objective function is linear, we take the logs of the resulting probabilities so that

maximizing our model’s objective function corresponds to finding the most likely assignment.

7.4.3 Joint Discriminative Training

Of course, since CCMP gives complete control over learned parameters, there’s no reason why they

must represent probabilities as they did in Section 7.4.2. We now show that the discriminative,

structured learning algorithm of [Collins, 2002] in which learned parameters have a much different

semantics is perhaps even easier to implement than the classical HMM. This isn’t surprising, since

discriminative models are the focus in CCMP. The train function in Figure 7.9 simply loops over

111



1. function train(data) {
2. var tagModel = HMM(CPT()) ;
3.
4. for (var sentence in data) {
5. var x = extract+(tagModel(sentence[0])) ;
6. var q = labelOuts(x, sentence[1]) ;
7. tagModel <+= .25 * (x(q) - x(viterbi(tagModel, x))) ;
8. }
9.
10. return classifier(tagModel, viterbi) ;
11. }

Figure 7.9: The Collins’ Perceptron structured learning algorithm fits into our testing framework
by simply applying some simple linear algebra.

training sentences extracting structured examples and querying them. The query q computed on

line 6 using a standard CCMP library function associates a label from the data with each output

variable from the structured example. Then, the second query on line 7 is computed by Viterbi,

and the two vectors resulting from the queries participate in some linear algebra that updates the

model’s weight vector.

7.4.4 A Greedy Discriminative Architecture

In our final example, we consider a discriminative architecture in which the CPT model is trained

outside of the context of the HMM model that adopts it for its larger inference purpose. This

example involves more code than the other two, but its inference algorithm is linear instead of

quadratic in the number of possible tags for each output variable. The training and inference pro-

tocols are inspired by the SNoW learning architecture [Carlson et al., 1999] and the PoS tagger of

[Roth and Zelenko, 1998], in which predictions for previous tags are used to inform the prediction

for the current tag at inference-time. It may also be useful to refer to the discussion on multi-class

classification in CCMs in Section 3.2.2.

We first present in Figure 7.10 the details of the train function which, as it trains CPT, treats the

first output variable (oneBefore) as if it were an input feature supporting the multi-class classification

being made by the second output variable (currentTag). In fact, the set of all features in the model
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1. function train(data) {
2. var m = CPT() ;
3.
4. for (var sentence in data) {
5. for (var i from 0 to length sentence[0]) {
6. var x = extract+(m(sentence[0, i])) ;
7. var ov = outs x ;
8. var vals = m valuesof ov[1] ;
9. var tag = sentence[1, i + 1] ;
10. var found = false ;
11. var q = ov[0] :: sentence[1, i] ;
12.
13. for (var val in vals) {
14. var v = x(q /\ ov[1] :: val) ;
15. var f = val == tag ;
16. var l = f ? 1 : 0 ;
17. var p = m . v > 1 ? 1 : 0 ;
18. if (l != p) { m <+= .125 * (l - p) * v ; }
19. found ||= f ;
20. }
21.
22. if (! found) { m <+= .125 * x(q /\ ov[1] :: tag) ; }
23. }
24. }
25.
26. return classifier(HMM(m), greedy) ;
27. }

Figure 7.10: A simple multi-class classifier that uses the previous word’s tag as a feature when
predicting the current tag also fits into our testing framework.

containing the predicate currentTag :: s for a given string s are collectively treated as an LTU by

train. The inference algorithm described below will do the same.

The train function is organized into three nested loops. The first loops over the sentences in the

training data, and the second loops over the words in each sentence. An example is extracted for

each word. Finally, the innermost loop iterates over the string values associated with the currentTag

output variable in CPT’s label lexicon. For each such value s, we query the example for a vector

of all features containing the predicate currentTag :: s. We desire this vector’s dot product with

the model to be greater than an arbitrary threshold (set to 1 in Figure 7.10) if and only if s is the

correct tag for the current word. If that proposition turns out to be false, we make a Perceptron
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1. function greedy(m, x) {
2. var ov = outs x ;
3. var result = ov[0] :: "" ;
4. var prev = "" ;
5.
6. for (var i from 1 to length ov) {
7. var vals = m valuesof ov[i] ;
8. var bestScore = -infinity ;
9. var best = null ;
10. var q = ov[i - 1] :: prev ;
11.
12. for (var v in vals) {
13. var score = m . x(q /\ ov[i] :: v) ;
14. if (score > bestScore) {
15. bestScore = score ;
16. best = v ;
17. }
18. }
19.
20. result /\= ov[i] :: best ;
21. prev = best ;
22. }
23.
24. return result ;
25. }

Figure 7.11: An inference algorithm that greedily fixes the prediction of an independently trained
classifier on one word before using that prediction as a feature with which to help make a prediction
on the next word.

style update with a learning rate of 0.125. Finally, a provision is made to make an appropriate

update to the model when the label lexicon did not yet contain the true label of the current word.

That label is considered to have a dot product of 0 which is below the threshold in that case.

We now have a multi-class classifier that predicts the tag of the current word given the tag of the

previous word. The only question that remains is how this classifier’s predictions should interact

with each other in the context of a full sentence. Following [Roth and Zelenko, 1998], the inference

algorithm in Figure 7.11 greedily fixes the classifier’s prediction at each position in the sentence and

uses it as an input feature for the next prediction.

114



1. model transitivity() -> (n) {
2. out outs = boolean[n, n] ;
3. for (var i from 0 to n) {
4. for (var j from i + 1 to n) {
5. for (var k from j + 1 to n) {
6. constraint : outs[i][j] /\ outs[j][k] => outs[i][k] ;
7. constraint : outs[i][j] /\ outs[i][k] => outs[j][k] ;
8. constraint : outs[i][k] /\ outs[j][k] => outs[i][j] ;
9. }
10. }
11. }
12. }

Figure 7.12: CCMP is capable of defining abstract properties over output variables independently
of any learned model. Here, we see an encoding of transitivity which can be applied to any model
involving a binary, Boolean classifier.

7.4.5 Discussion

The example codes presented in this section implement three kinds of models with different the-

oretical underpinnings. Perhaps because they are discussed nearly independently of each other in

the literature, their implementations are always independent of each other as well. Each implemen-

tation makes its own assumptions about the type of problem being solved, or worse yet, the types

of algorithms the user will wish to run.

The CCM formalism accommodates all three under a single formalism, highlighting the aspects

that truly separate them from one another. In particular, it highlights a) how each model is

structurally and operationally decomposed during both learning and inference and b) the fact that

these decisions are orthogonal to each other. Thus, CCMP enables the programmer to design the

shape of his model independently of how it will be trained and evaluated. Neither the choice to train

jointly or as a set of independent classifiers nor the choice to optimize a global objective function

or one that’s more local needs to affect how the model is declared.

Furthermore, once models are defined in CCMP, their composition in terms of each other is

simplified and their capacity for abstraction is enhanced. Simply import existing models into a new

one establishing a common vocabulary of output variables and establish additional relationships
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(i.e. features and constraints) in terms of that vocabulary as necessary. Since relations are specified

between output variables instead of models, abstract model properties can be defined independently

of each other and independently of any learned model. For example, in Figure 7.12, we see a set of

constraints defined in a model named “transitivity” assuming only a set of Boolean output variables.

When applied to the same set of output variables as a binary relational classifier with Boolean output

(e.g., the pairwise coreference classifier in Section 6.2.2), that classifier becomes transitive. We need

not redesign this transitivity property in the future the next time such a classifier requires it. This

type of abstraction was not possible in any previous LBP-like formalism.
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Chapter 8

Conclusion

Simple learning based programs are becoming ubiquitous in today’s technologies. They will in-

evitably grow in scope and complexity in the future, but to ensure a rapid pace of development, it

is crucial to organize engineering efforts under a framework of modularity and reusability. Today’s

implementations of these programs fall short of this ideal in large part because there has not been

enough cross-breeding between machine learning formalisms that are considered disparate and in-

compatible. This misguided perspective leads to implementations that are seemingly uncomposable

by design. It would be much more productive to focus on the similarities of popular approaches

rather than differences and to aim for implementations that reflect this similarity while directly

supporting and encouraging composition in larger systems.

This thesis introduces Learning Based Programming, the study of programming language for-

malisms that directly support programs that learn their representations from data. The vision of

LBP is to enable abstraction of both learning related implementation details and domain specific

concepts that cannot be unambiguously defined without learned functions. Several important steps

towards that goal have been taken by this work. First, we have detailed a set of design principles

that an LBP programming language should have to ensure so that modern models are supported,

and scalable solutions are feasible. Second, we presented two LBP languages and demonstrated their

ability to represent at a high level systems based on both structured and unstructured ML tech-

niques. These languages should be viewed as two data points from a continuum of representational

possibilities which has only recently begun to be explored.

With Learning Based Java we intended to make machine learning accessible by hiding as many

feature extraction and learning and inference algorithm details as possible from the programmer.

This, we thought, would enable programmers to focus on their domain specific problems rather
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than worrying about how machine learning works. LBJ worked well in the simplest cases, but its

ideals are flawed for a couple of key reasons. First, most people, especially researchers cannot be

satisfied that their system works exactly as intended unless they are sure they understand every

component of that system. Second, machine learning in general does not yet offer any general

purpose solutions. Thus, whether or not a programmer understands these issues at the outset of

designing a new system, they will eventually be forced to evaluate several different algorithms and

to tune each to the peculiarities of their specific task if they wish to uncover the best performing

solution. In other words, an LBP language that hides low level details too deeply will have limited

usefulness in the long run.

The CCMP programming language addresses well the most important issues that LBJ failed to

address. In particular, it supports the design of arbitrary CCMs, enabling structured learning and

inference algorithms applied to structured models. Furthermore, it does so with full transparency

to all low level details, so that any interested programmer can customize any aspect of algorithm

behavior. Simultaneously, it also provides a new level of abstraction by explicitly representing

output variables and separating them from the models that describe them. This is an important

step for the development of modular, reusable model property specification, and we believe it is

necessary learning based systems to scale well.

However, CCMP still lacks the ability to relate model design to algorithm design. For example,

our implementation of the Viterbi algorithm in Figure 7.4 makes queries to a structured example

over consecutive output variables. In doing so, CCMP facilitates the algorithm’s discovery of the

output variables themselves, but not the relationships between them. The Viterbi implementation

must trust that relationships between consecutive output variables actually exist. From another

prospective, the programmer who wishes to use Viterbi for sequence tagging must understand how

to establish relationships in his model so that Viterbi can make use of them. It would be very useful

if a compiler could catch these types of issues at compile-time and warn the programmer that the

algorithm expects relationships that aren’t present in the model. It might also be useful to recognize

when relationships in the model aren’t addressed by the algorithm.

Model analyses can potentially yield benefits for automatic algorithm selection as well. While
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the general problem of algorithm selection given a model structure is NP-hard, it would be possible

to recognize pre-defined patterns in a model’s design and map them to algorithms appropriately.

This could even be part of an interactive model design process involving both model and data

analyses. All of these provide fertile ground for interesting future work.
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Appendix A

Cognitive Dimensions Questionnaire

We present here the full text of the questionnaire presented to the participants of the LBJ evaluation

described in Chapter 5. See [Blackwell and Green, 2000] for more details.

Thinking About Notational Systems

This questionnaire collects your views about how easy it is to use some kind of notational system.

Our definition of "notational systems" includes many different ways of storing and using information

- books, different ways of using pencil and paper, libraries or filing systems, software programs,

computers, and smaller electronic devices. The questionnaire includes a series of questions that

encourage you to think about the ways you need to use one particular notational system, and

whether it helps you to do the things you need.

A.1 Background Information

• What is the name of the system?

• How long have you been using it?

• Do you consider yourself proficient in its use?

• Have you used other similar systems? (If so, please name them)

A.2 Definitions

You might need to think carefully to answer the questions in the next sections, so we have provided

some definitions and an example to get you started:
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Product: The product is the ultimate reason why you are using the notational system - what

things happen as an end result, or what things will be produced as a result of using the notational

system. This event or object is called the product. Any product that needs a notation to describe

it usually has some complex structure.

Notation: The notation is how you communicate with the system - you provide information in

some special format to describe the end result that you want, and the notation provides information

that you can read. Notations have a structure that corresponds in some way to the structure of the

product they describe. They also have parts (components, aspects etc.) that correspond in some

way to parts of the product.

Notations can include text, pictures, diagrams, tables, special symbols or various combinations

of these. Some systems include multiple notations. These might be quite similar to each other -

for example when using a typewriter, the text that it produces is just letters and characters, while

the notation on the keys that you press tells you exactly how to get the result you want. In other

cases, a system might include some notations that are hard for humans to produce or to read. For

example when you use a telephone the notation on the buttons is a simple arrangement of digits,

but the noises you hear aren’t so easy to interpret (different dialing tones for each number, clicks,

and ringing tones). A telephone with a display therefore provides a further notation that is easier

for the human user to understand.

Sub-devices: Complex systems can include several specialized notations to help with a specific

part of the job. Some of these might not normally be considered to be part of the system, for

example when you stick a Post-It note on your computer screen to remind you what to write in a

word processor document.

There are two kinds of these sub-devices.

• The Post-It note is an example of a helper device. Another example is when you make notes

of telephone numbers on the back of an envelope: the complete system is the telephone plus

the paper notes - if you didn’t have some kind of helper device like the envelope, the telephone

would be much less useful.
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• A redefinition device changes the main notation in some way - such as defining a keyboard

shortcut, a quick-dial code on a telephone, or a macro function. The redefinition device allows

you to define these shortcuts, redefine them, delete them and so on.

Note that both helper devices and redefinition devices need their own notations that are separate

from the main notation of the system. We therefore ask you to consider them separately in the rest

of this questionnaire.

To review how we intend to use these terms, consider the example of a word processor. The

product of using the word processor is the printed letter on paper. The notation is the way that the

letter looks on the screen - on modern word processors it looks pretty similar to what gets printed

out, but this wasn’t always the case. If you want to find and replace a particular word throughout

a document, you can call up a helper device, the search and replace function, usually with its own

window. This window has its own special notation - the way that you have to write the text to be

found and replaced, as well as buttons that you can click on to find whole words, or to find the

word in upper and lower case etc.

A.3 Parts of the System

• What task or activity do you use the system for?

• What is the product of using the system?

• What is the main notation of the system?

When using the system, what proportion of your time (as a rough percentage) do you spend:

• Searching for information within the notation [ ]%

• Translating substantial amounts of information from some other source into the system [ ]%

• Adding small bits of information to a description that you have previously created [ ]%

• Reorganizing and restructuring descriptions that you have previously created [ ]%

• Playing around with new ideas in the notation, without being sure what will result [ ]%
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Are there any helper devices? Please list them here, and fill out a separate copy of Section 5 for

each one. There are several copies of Section 5 below.

Are there any redefinition devices? Please list them here, and fill out a separate copy of Section

5 for each one.

A.4 Questions About the Main Notation

A

• How easy is it to see or find the various parts of the notation while it is being created or

changed? Why?

• What kind of things are more difficult to see or find?

• If you need to compare or combine different parts, can you see them at the same time? If not,

why not?

B

• When you need to make changes to previous work, how easy is it to make the change? Why?

• Are there particular changes that are more difficult or especially difficult to make? Which

ones?

C

• Does the notation a) let you say what you want reasonably briefly, or b) is it long-winded?

Why?

• What sorts of things take more space to describe?

D

• What kind of things require the most mental effort with this notation?
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• Do some things seem especially complex or difficult to work out in your head (e.g. when

combining several things)? What are they?

E

• Do some kinds of mistake seem particularly common or easy to make? Which ones?

• Do you often find yourself making small slips that irritate you or make you feel stupid? What

are some examples?

F

• How closely related is the notation to the result that you are describing? Why? (Note that

in a sub-device, the result may be part of another notation, rather than the end product).

• Which parts seem to be a particularly strange way of doing or describing something?

G

• When reading the notation, is it easy to tell what each part is for in the overall scheme? Why?

• Are there some parts that are particularly difficult to interpret? Which ones?

• Are there parts that you really don’t know what they mean, but you put them in just because

it’s always been that way? What are they?

H

• If the structure of the product means some parts are closely related to other parts, and changes

to one may affect the other, are those dependencies visible? What kind of dependencies are

hidden?

• In what ways can it get worse when you are creating a particularly large description?

• Do these dependencies stay the same, or are there some actions that cause them to get frozen?

If so, what are they?
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I

• How easy is it to stop in the middle of creating some notation, and check your work so far?

Can you do this any time you like? If not, why not?

• Can you find out how much progress you have made, or check what stage in your work you

are up to? If not, why not?

• Can you try out partially-completed versions of the product? If not, why not?

J

• Is it possible to sketch things out when you are playing around with ideas, or when you aren’t

sure which way to proceed? What features of the notation help you to do this?

• What sort of things can you do when you don’t want to be too precise about the exact result

you are trying to get?

K

• When you are working with the notation, can you go about the job in any order you like, or

does the system force you to think ahead and make certain decisions first?

• If so, what decisions do you need to make in advance? What sort of problems can this cause

in your work?

L

• Where there are different parts of the notation that mean similar things, is the similarity clear

from the way they appear? Please give examples.

• Are there places where some things ought to be similar, but the notation makes them different?

What are they?
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M

• Is it possible to make notes to yourself, or express information that is not really recognized as

part of the notation?

• If it was printed on a piece of paper that you could annotate or scribble on, what would you

write or draw?

• Do you ever add extra marks (or colors or format choices) to clarify, emphasize or repeat what

is there already? [If yes: does this constitute a helper device? If so, please fill out another

Section 5 describing it. Several copies of Section 5 are available below.]

N

• Does the system give you any way of defining new facilities or terms within the notation,

so that you can extend it to describe new things or to express your ideas more clearly or

succinctly? What are they?

• Does the system insist that you start by defining new terms before you can do anything else?

What sort of things?

• If you wrote here, you have a redefinition device: please fill out a copy of Section 5 describing

it. There are several copies below.

O

• Do you find yourself using this notation in ways that are unusual, or ways that the designer

might not have intended? If so, what are some examples?

• After completing this questionnaire, can you think of obvious ways that the design of the

system could be improved? What are they? Could it be improved specifically for your own

requirements?
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A.5 Questions About Sub-devices

Please fill out a copy of this section for each sub-device in the system.

This page is describing (place an ‘x’ in one box): a helper device [ ], or a redefinition device

[ ].

• What is its name?

• What kind of notation is used in this sub-device?

When using this sub-device, what proportion of the time using it (as a rough percentage) do

you spend:

• Searching for information [ ]%

• Translating substantial amounts of information from some other source into the system [ ]%

• Adding small bits of information to a description that you have previously created [ ]%

• Reorganizing and restructuring descriptions that you have previously created [ ]%

• Playing around with new ideas in the notation, without being sure what will result [ ]%

In what ways is the notation in this sub-device different from the main notation? Please place

an ‘x’ in boxes where there are differences from the main notation, and write a few words explaining

the difference.

• [ ] Is it easy to see different parts?

• [ ] Is it easy to make changes?

• [ ] Is the notation succinct or long-winded?

• [ ] Do some things require hard mental effort?

• [ ] Is it easy to make errors or slips?

• [ ] Is the notation closely related to the result?
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• [ ] Is it easy to tell what each part is for?

• [ ] Are dependencies visible?

• [ ] Is it easy to stop and check your work so far?

• [ ] Is it possible to sketch things out?

• [ ] Can you work in any order you like?

• [ ] Are any similarities between different parts clear?

• [ ] Can you make informal notes to yourself?

• [ ] Can you define new terms or features?

• [ ] Do you use this notation in unusual ways?

• [ ] How could the design of the notation be improved?
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