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Abstract
Today’s natural language processing systems are growing more complex with the need to incorporate a wider range of language resources
and more sophisticated statistical methods. In many cases, it is necessary to learn a component with input that includes the predictions of
other learned components or to assign simultaneously the values that would be assigned by multiple components with an expressive, data
dependent structure among them. As a result, the design of systems with multiple learning components is inevitably quite technically
complex, and implementations of conceptually simple NLP systems can be time consuming and prone to error. Our new modeling
language, Learning Based Java (LBJ), facilitates the rapid development of systems that learn and perform inference. LBJ has already been
used to build state of the art NLP systems. This paper details recent advancements in the language which generalize its computational
model, making a wider class of algorithms available.

1. Introduction

As the fields of Natural Language Processing (NLP) and
Computational Linguistics have matured, more sophisti-
cated language resources and tools have become available.
These tools perform complicated analyses of natural lan-
guage text to find named entities, identify the argument
structure of verbs, determine the referents of pronouns and
nominal phrases, and more. Many such tasks involve mul-
tiple learning components whose collective objective is to
assign values to variables that may have an expressive, data
dependent structure among them. Thus, systems that per-
form these tasks have complicated, data dependent develop-
ment cycles and run-time interactions. As such, their imple-
mentations become large and unwieldy, which can restrict
their usefulness as resources.
Organized infrastructure solutions such as GATE (Cun-
ningham et al., 2002), NLTK (Loper and Bird, 2002), and
IBM’s UIMA (Götz and Suhre, 2004) only partially solve
these issues. They aim to make separately learned compo-
nents “plug-and-play”, but they do not help manage their
training nor do they offer solutions when the outputs of dif-
ferent components contradict each other. The more recently
developed Alchemy (the most popular MLN (Richardson
and Domingos, 2006) implementation) and FACTORIE
(McCallum et al., 2009) systems offer general purpose so-
lutions for global training and inference, but they lack the
flexibility to decompose the problem, and general purpose
algorithms quickly become intractable on the large prob-
lems encountered in NLP.
A comprehensive solution for modeling problems in NLP
(as well as other domains) would combine the advantages
of both types of systems mentioned above. It would make
effortless the combination of arbitrary types of components
in the learned system, be they learned or hard coded (e.g.
features and constraints). At the same time, it would al-
low the modeling of large, structured problems over which
learning and inference can be performed globally. How-
ever, in contrast to the systems above, it should also allow
a flexible decomposition of such large, structured problems
so that learning and inference can be efficiently tailored to
suit the problem.

We refer to the whole of these principles as Learning Based
Programming (LBP) (Roth, 2006). Our previous work in-
troduced Learning Based Java1 (LBJ) (Rizzolo and Roth,
2007), a modeling langauge that represented a first step in
this direction. It modeled a user’s program as a collection
of locally defined experts whose decisions are combined to
make them globally coherent. While this is certainly one
type of decomposition LBP aims to provide, the language
lacked the expressivity to specify other interesting models.
This paper makes three main contributions. First, we
demonstrate that there exists a theoretical model that de-
scribes most, if not all, NLP approaches adeptly (Section
2.). Second, we describe our improvements to the LBJ
language and show that they enable the programmer to de-
scribe the theoretical model succinctly (Sections 3. and 4.).
Third, we introduce the concept of data driven compilation,
a translation process in which the efficiency of the gener-
ated code benefits from the data given as input to the learn-
ing algorithms (Section 5.). Thus, the programmer spends
his time designing his models instead of worrying about
the low level details of writing efficient learning based pro-
grams that have been abstracted away.

2. A Model for NLP Systems

We submit the constrained conditional model (CCM) of
(Chang et al., 2008) as the paradigmatic NLP modeling
framework. A CCM can be represented by two weight vec-
tors, w and ρ, a set of feature functions Φ = {ϕi |ϕi :
X × Y → R}, and a set of constraints C = {Cj |Cj :
X ×Y → R}. Here, X is referred to as the input space and
Y is referred to as the output space. Most often, both are
multi-dimensional. Let X be the set of possible values for a
single element of the input, and let Υ be similarly defined
for the output. Then X = Xp and Y = Υq for integers p
and q.
The score for an assignment to the output variables y ∈ Y
on an input instance x ∈ X can then be obtained via the

1Java is a registered trademark of Sun Microsystems, Inc.



linear objective function

f(x,y) =
∑
i

wiϕi(x,y)−
∑
j

ρjCj(x,y), (1)

and inference is performed by selecting (perhaps approxi-
mately) the highest scoring output variable assignment:

y∗ = argmax
y∈Y

f(x,y) (2)

While features and constraints are defined to return real val-
ues above, they are often Boolean functions that return 0 or
1 in this context. The only difference between them is that
a feature’s weights are set by a learning algorithm, whereas
a constraint’s weights are set by a domain expert. Thus,
constraints are a mechanism for incorporating knowledge
into the model. Note that CCMs are not restricted to any
particular learning or inference algorithms. Thus, the de-
signer of the model can tailor the semantics of the features
and weights for the task at hand.
The CCM is very general and subsumes many modeling
formalisms. As such, many, if not all models developed in
the NLP community fall under its umbrella. For the rest of
this section, we will explore these claims in more depth.

2.1. Classical Models of Learning

The simplest types of models are predictors for discrete
variables. CCM is also general enough to model real valued
variables, but regression is rarely utilized in NLP, so we will
omit that discussion here. Below, we consider some famil-
iar learning models that can all be realized as CCMs. They
are all unconstrained, so the second summation in equation
(1) can be ignored for now.

2.1.1. Linear Threshold Units
Binary classification algorithms such as Perceptron (Rosen-
blatt, 1958) and Winnow (Littlestone, 1988) represent their
hypothesis with a weight vector w whose dimensions cor-
respond to features of the input {ϕ′

i(x)}. The prediction of
the model is then y∗ = sign(w ·Φ′(x)), the dot product be-
tween the weight vector and the features is compared with
a threshold θ = 0. Thus, we refer to these models as linear
threshold units (LTUs).
To cast this model as a CCM, we first note that Υ =
{−1, 1} and Y = Υ. There are no restrictions on X or
X . Then we simply distribute the output variable y into the
definitions of the features:

ϕi(x, y) = y ϕ′
i(x) (3)

Equations (1) and (2) can then be used for inference. All
wi and ϕ′

i(x) are fixed, so the objective function remains
linear.

2.1.2. Multi-Class Classifiers
A popular approach to online multi-class classification in-
stantiates for each class a separate LTU wy , y ∈ Υ, indexed
by the same features of the input {ϕ′

i(x)} (Carlson et al.,
1999; Crammer and Singer, 2003). The prediction is then

simply the class associated with the highest scoring weight
vector y∗ = argmaxy∈Y wy · Φ′(x).
Once again, to cast this model as a CCM, we have Y = Υ,
and we distribute the output variable into the definitions of
the features. However, in this case, valid values ŷ ∈ Υ of
the output variable will also be used to index the features
(Punyakanok et al., 2005):

Iŷ(y) =

{
1 if y = ŷ
0 otherwise (4)

ϕi,ŷ(x, y) = Iŷ(y)ϕ
′
i(x) (5)

f(x, y) =
∑
i,ŷ

wi,ŷϕi,ŷ(x, y) (6)

Equation (4) effectively redefines our output space from
a single, discrete variable into a set of Boolean variables.
Equation (6) simply shows the objective function f from
equation (1) with the new feature indexing scheme. It is
linear in the new Iŷ(y) variables, and we can use equation
(2) for inference.
Generative models used for multi-class classification such
as naı̈ve Bayes can also be viewed in this light (Roth, 1999).

2.1.3. Hidden Markov Models
The standard in sequential prediction tasks is the Hidden
Markov Model (HMM) (Rabiner, 1989). It is a generative
model that incorporates (1) a probability of making each
possible emission at step i and (2) a probability of being
in each possible state at step i + 1, both conditioned on
the state at step i. These probabilities are usually organized
into emission and transition probability tables, P (ei|si) and
P (si+1|si), respectively, where si ∈ S and ei ∈ E. Dur-
ing inference, the emissions ei are fixed, the state variables
si are our output variables, and our goal is to find the as-
signment that maximizes likelihood or, equivalently, log-
likelihood:

s∗ = argmax
s

n∏
i=1

P (si|si−1)P (ei|si) (7)

= argmax
s

n∑
i=1

log(P (si|si−1)) + log(P (ei|si)) (8)

where s0 is a special 0th state symbol placed at the begin-
ning of every sequence.
Following (Collins, 2002), we can cast equation (8) as a
CCM by first flattening the log probabilities into our weight
vector. Next, we rearrange equation (8) to factor out the
model’s weights, which are just the individual probabilities
in the two tables:

Ir̂,r̂′(r, r
′) = Ir̂(r)Ir̂′(r

′) (9)

s∗ = argmax
s

∑
ŝ,ê

log(P (ê|ŝ))

(
n∑

i=1

Iŝ,ê(si, ei)

)

+
∑
ŝ,ŝ′

log(P (ŝ|ŝ′))

(
n∑

i=1

Iŝ,ŝ′(si, si−1)

)
(10)



It is now clear that our features simply count the number of
occurrences of each (state, emission) pair and each pair of
consecutive states in the sequence. Thus, with X = En and
Y = Sn, we can complete our CCM definition as follows:

ϕx̂,ŷ(x,y) =

n∑
i=1

Ix̂,ŷ(xi, yi) (11)

ϕŷ,ŷ′(x,y) =

n∑
i=1

Iŷ,ŷ′(yi, yi−1) (12)

f(x,y) =
∑
x̂,ŷ

wx̂,ŷϕx̂,ŷ(x,y) +
∑
ŷ,ŷ′

wŷ,ŷ′ϕŷ,ŷ′(x,y)

(13)

Our objective function (13) is once again linear in the vari-
ables Ix̂,ŷ(xi, yi) and Iŷ,ŷ′(yi, yi−1). As Collins notes, we
can then solve equation (2) efficiently with the Viterbi al-
gorithm.

2.2. Multivariate NLP Models

In recent years, NLP systems have moved away from mod-
els of single output variables to incorporate many decisions
simultaneously. But these joint models must still be decom-
posed to be tractable during both learning and inference.
Thus, many researchers now use classical models as build-
ing blocks for the decomposition of their systems. They
use constraints to encode structural relationships between
these building blocks as well as prior knowledge about their
global behavior. Additionally, they frequently infuse fur-
ther knowledge into the system by controlling the behavior
of the inference algorithm. CCMs can accommodate all of
these modeling techniques.
A prime example of this modeling philosophy is the seman-
tic role labeling (SRL) system of (Punyakanok et al., 2008).
In SRL, the input x represents a sentence of natural lan-
guage text. The sentence must be segmented into phrases
which may represent arguments of a given verb in the sen-
tence. Each phrase that does represent an argument must be
classified by its type. While a solution to this problem could
be learned in a joint probabilistic framework, Punyakanok,
et al. decomposed it into two independently learned com-
ponents and hard constraints encoding prior knowledge en-
forced only at inference time. They showed that this de-
composition resulted in more efficient learning requiring
less training data as well as a fast inference strategy. We
now discuss the implementation of this system as a CCM.

Decomposition: Their system accepted an array x of n
argument candidates as input. They learned, independently,
one linear threshold unit to act as an argument candidate fil-
ter, and one multi-class classifier to predict argument types.
Both classifiers classify a single argument candidate x ∈ x
and were trained with features of only the input Φ′

F (x) and
Φ′

T (x), respectively. The filter predicts either yes or no.
The type classifier selects a prediction from T ∪ {null}
where T is the set of argument types (e.g. A0, A1, A2, ...)
and null indicates the candidate argument is not actually
an argument. So, the CCM will include two output vari-
ables yj,F ∈ {−1, 1} and yj,T ∈ T ∪ {null} for each
argument candidate xj . We can write its feature functions

as follows.

ϕi,F (x,y) =

n∑
j=1

yj,F ϕ′
i,F (xj) (14)

ϕi,ŷ,T (x,y) =
n∑

j=1

Iŷ(yj,T )ϕ
′
i,T (xj) (15)

Constraints: If the filter predicts no, the type classifier
must predict null. We will refer to this structural con-
straint as the filter constraint. In addition, there are the
structural constraints ensuring that no two arguments over-
lap as well as knowledge about type regularities encoded in
constraints such as

• no two arguments associated with any given verb may
have type At, for t ∈ {0, 1, 2, 3, 4, 5}, and

• if any argument associated with a verb v has reference
type R-At, then some other argument associated with v
must have the referent type At, for t ∈ {0, 1, 2, 3, 4, 5}.

Constraints were defined at the beginning of this section
as returning a real value, just like features. However,
they are often most useful as new Boolean output variables
C(x,y) ∈ {0, 1} indicating whether some desirable prop-
erty of the other variables has been violated. In this case,
their definition often comes in the form of linear inequal-
ities. Here is the linear definition of the filter constraint:

Cj,F (x,y) ≥ I−1(yj,F )− Inull(yj,T ) (16a)
2Cj,F (x,y) ≤ I−1(yj,F )− Inull(yj,T ) + 1 (16b)

The inequalities (16) establish that Cj,F (x,y) will be 1 if
the type variable for argument xj is non-null when its fil-
ter variable says no (i.e., the filter constraint has been vi-
olated), and 0 otherwise. Unlike our feature definitions,
these inequalities must reside outside the objective function
as separate constraints on the inference problem.
Constraints that establish a logical relationship between
output variables can be written to enforce the other struc-
tural and domain specific constraints in our SRL problem
as well (Punyakanok et al., 2008). In fact, any constraint
written in a logical form can be translated to such linear
inequalities automatically (Rizzolo and Roth, 2007). We
omit the descriptions of the remaining constraints for lack
of space.

Inference: The inference strategy employed by Pun-
yakanok, et al. was motivated by empirical evidence they
gathered indicating that a prediction of no from the filter
was correct a high percentage of the time. As such, they
chose to trust these decisions more than decisions made by
the type classifier. This behavior can be implemented in a
CCM by artificially inflating the filter’s scores by a constant
α.

f(x,y) = αwF · ΦF (x,y) +wT · ΦT (x,y)

−∞C(x,y)
(17)

This will cause the model to prefer, in general, global as-
signments that agree with the filter classifier. Note also that
the constraints are all hard; ie., if any constraint is violated,
the score of the assignment is −∞.



1. model ArgumentIdentifier :: discrete[] input -> boolean isArgument

2. input[*] /\ ˆisArgument;

3. model ArgumentType :: discrete[] input -> discrete type

4. input[*] /\ type;

5. input[*] /\ input[*] /\ type;

6. static model pertinentData :: ArgumentCandidate candidate

7. -> discrete[] data

8. data.phraseType = candidate.phraseType();

9. data.headWord = candidate.headWord();

10. data.headTag = candidate.headTag();

11. data.path = candidate.path();

Figure 1: The SRL system from Section 2.2. is decomposed into two learned components whose general structure is defined
in lines 1-5. Lines 6-11 define a hard-coded model that collects data from a Java object for later use as input variables for
the learned components.

2.3. Other CCMs in the Wild

Examples of more complicated CCMs abound in the NLP
literature. (Barzilay and Lapata, 2006) describes an au-
tomatic semantic aggregator that uses constraints to con-
trol the number of aggregated sentences and their lengths.
(Marciniak and Strube, 2005) describes a general constraint
framework for solving multiple NLP problems simultane-
ously. (Martins et al., 2009) describes a dependency pars-
ing system that incorporates prior knowledge as hard con-
straints. These and other systems would be more easily
maintainable, more portable, and more useful as resources
if they had been developed in a modeling formalism de-
signed specifically for them. We aim to provide such an
environment in Learning Based Java.

3. Learning Based Java
Learning Based Java has already been used to develop sev-
eral state-of-the-art resources. The LBJ POS tagger2 re-
ports a competitive 96.6% accuracy on the standard Wall
Street Journal corpus. In the named entity recognizer of
(Ratinov and Roth, 2009), non-local features, gazetteers,
and wikipedia are all incorporated into a system that
achieves 90.8 F1 on the CoNLL-2003 dataset, the highest
score we are aware of. Finally, the co-reference resolution
system of (Bengtson and Roth, 2008) achieves state-of-the-
art performance on the ACE 2004 dataset while employing
only a single learned classifier and a single constraint.
Nevertheless, our previous work on LBJ was not expres-
sive enough to represent features involving multiple output
variables. This paper redesigns LBJ to represent, learn, and
perform inference over arbitrary CCMs. We introduce our
modeling language by example. The codes in Figures 1, 2,
and 3 specify the structure of the Punyakanok, et al. se-
mantic role labeling system.3 These figures discuss how
LBJ language constructs address the concerns of the SRL
system as described in Section 2.2. Section 3.1. discusses
each in turn. Section 3.2. then describes the syntax of fea-
tures and constraints in more detail.

2http://L2R.cs.uiuc.edu/∼cogcomp/software.php
3Some of the features and constraints have been omitted to

save space.

3.1. Models

A model in LBJ simply represents an objective function of
the form of equation (1) in which the weights w are im-
plicit (recall that ρ is specified by a human; thus it is ex-
plicit). Features and constraints are specified in a logic syn-
tax as described in Section 3.2. Once these are specified, the
model can be instantiated so that each instance contains its
own weight vectors.

Decomposition: Figure 1 immediately describes the unit
of decomposition used to build the system. The two models
declared on lines 1 and 3 are the models that will do all the
system’s learning. The ArgumentIdentifier model will
be a linear threshold unit, so it has a boolean output vari-
able. Its body declares features in the form of equation (3).
The ArgumentType model will be a multi-class classifier,
so it has a discrete output variable. Its features are de-
clared in the form of equation (5). (The syntax for writing
these features on lines 2, 4, and 5 is described in Section
3.2.) Finally, Figure 1 declares a model used merely to ex-
tract the data we wish to utilize in these learned models. We
will see in Figure 3 how this data is given to them.
In more detail, a model declaration’s header contains a
name for the model and a list of argument specifications.
The list is partitioned by an arrow (->) indicating that the
arguments on the left represent input, and the arguments
on the right represent output variables. Input may mean
input variables, primitive types, or Java objects from the
programmer’s main program. The variables (either input or
output) in these examples are the ones with types boolean
or discrete. They are intended precisely to represent the
x and y input and output variables in equation (1).
Any model may be declared static, and it has roughly the
same meaning as the same keyword when used on a Java
method. Models with no learnable parameters are usually
declared static. A model may also be hard-coded, though
there is no keyword for this property. A hard-coded model
is one whose output is well defined even without learn-
ing any parameters. The pertinentData model on line
6 which contains only assignment statements is both static
and hard-coded.
Constraints: Figure 2 contains the implementations for
some of the constraints in this SRL system. The first model



1. static model noOverlaps :: ArgumentCandidate[] candidates -> discrete[] types

2. for (i : (0 .. candidates.size() - 1))

3. for (j : (i + 1 .. candidates.size() - 1))

4. #: candidates[i].overlapsWith(candidates[j])

5. => types[i] :: "null" || types[j] :: "null";

6. static model noDuplicates :: -> discrete[] types

7. #: forall (v : types[0].values)

8. atmost 1 of (t : types) t :: v;

9. static model referenceConsistency :: -> discrete[] types

10. #: forall (value : types[0].values)

11. (exists (var : types) var :: "R-" + value)

12. => (exists (var : types) var :: value);

Figure 2: Structural constraints and domain specific expert knowledge encoded as hard constraints are defined here as
separate models with no learning components.

1. model SRLProblem :: ArgumentIdentifier ai, ArgumentType at,

2. ArgumentCandidate[] candidates

3. -> boolean[] isArgument, discrete[] types

4. for (i : (0 .. candidates.size() - 1))

5. 100: isArgument[i] <- ai (pertinentData candidates[i]);

6. 1: types[i] <- at (pertinentData candidates[i]);

7. #: ˜isArgument[i] => types[i] :: "null";

8. types[*] <- noOverlaps candidates;

9. types[*] <- noDuplicates ();

10. types[*] <- referenceConsistency ();

Figure 3: The SRL system from Section 2.2. This code captures the decomposition of the inference problem into two
learned components and several hard constraints. A wide variety of learning and inference approaches can now be applied
over this structure.

declares a structural constraint over every pair of argument
candidates that says, “if two constraints overlap, they can’t
both have non-null type.” The other two models encode
knowledge about the global behaviors of the output vari-
ables. The model on line 6 says, “each argument type may
appear at most once in the sentence,” and the model on line
9 says, “no reference type may appear unless it corresponds
to a referent.”
None of these models contain any learned weights. How-
ever, they are not considered hard-coded because there are
usually multiple valid outputs they might produce for a
given input, and LBJ makes no guarantee as to which will
be chosen.

Inference: Figure 3 puts all these components together
in the global model. By applying the learned models on
each argument candidate (as in lines 5 and 6), we construct
the objective function in equation (17). The scaling factors
appear at the beginning of the lines before the colon and
give preference to the decisions of the filter classifier. This
results in features of the form described by equations (14)
and (15). We also enforce the filter constraint as defined
by equations (16) on line 7. Finally, the externally defined
constraints are applied to the global model in lines 8-10.
The SRLProblem model takes native Java objects repre-
senting candidate SRL arguments as input, defines input
and output variables with respect to those objects, and ap-
plies the learned models and hard constraints over those
variables. Model application is a mechanism through which

the relationships described by one model can be established
amongst selected variables in another model. It is accom-
plished by binding the inputs and outputs of the applied
model to the inputs and outputs (respectively) in the par-
ent model (which is SRLProblem in this case). Binding
is different than assignment, because no results have been
computed. Instead, we are simply declaring that a particular
externally defined model’s structure appears in this model.
Lines 5, 6, 8, 9, and 10 of Figure 3 are all examples of
model application. They use the left arrow (<-) operator,
which binds variables in the manner described above. The
model application itself appears to its right, and the newly
bound output variables appear to its left. In general, inputs
must be bound with inputs and outputs with outputs. The
only exception is when the applied model is hard-coded.
Since a hard-coded model’s output is already completely
determined and cannot be affected by the context in which
it is applied, its output variables may be bound with input
variables in a parent model. We see pertinentData ap-
plied in this way in lines 5 and 6.
Finally, lines 8-10 enforce hard constraints in the model.
Unlike the model applications on lines 5 and 6, these three
model applications each bind to the entire dictionary of type
variables. In order for this type of binding to make sense,
the indexes (which can be integers or strings) used to access
the dictionary must be consistent from the applied model to
the parent model. In this case, for example, we used the
same integers in both contexts.



3.2. Features and Constraints

The relationships between variables that we have alluded
to throughout this paper come in the form of features and
constraints. The roles that these two constructs play in a
CCM are very similar. Each one simultaneously

• distinguishes a potential property of the variables and

• measures the presence or strength of that property in
the variables’ current values.

They are specified as predicates in a first order logic (FOL)
syntax in which variables play the role of objects. That syn-
tax contains the usual connectives and quantifiers, as well
as equality and inequality predicates (:: and !: respec-
tively) and quantifiers that can compare the quantities of
objects that satisfy a predicate.

3.2.1. Features
To distinguish features from each other, we give them
names. These names act as the indexes on features, con-
straints, and weight vectors we saw in Section 2. The
strength of the feature is the real valued result that is mul-
tiplied by the weight with the same name. However, for
simplicity, in this paper we will focus on Boolean features,
whose strengths can be 0 or 1.
Features’ names and values come from the variables they
are functions of, and the structure of the feature functions
themselves. As in most programming languages, variables
are referred to with identifiers and are used to store interest-
ing bits of data. LBJ has Boolean, discrete, and real vari-
ables. It also provides dictionaries in which the keys act
as separate variable names. Dictionaries can be accessed
with either integers or strings inside square brackets (e.g.
tags["foo"]) or the selection operator and an identifier
(e.g. tags.foo). Both of those syntax examples will refer
to the same variable.
Anywhere in the body of a model, a declarative fea-
ture statement indicates that the model will include a
weight associated with the specified feature. For exam-
ple, headWord :: "office" is a feature that evaluates
to true if and only if the headWord variable takes the value
"office". The name of the feature will be its entire lex-
ical form, after any interpolation that need be done in the
indexes of dictionaries.

3.2.2. Constraints
The same FOL syntax is available for the specification of
constraints, except that each constraint statement is pre-
fixed with a real-valued literal or a # symbol standing for
∞ followed by a colon. This value is the ρ corresponding
to the constraint in the objective function. It represents the
penalty that is incurred iff the constraint is violated.
Constraints tend to make more frequent use of the quanti-
fiers forall, exists, atleast, atmost, and exactly.
These quantifiers have essentially the same semantics as in
LBJ’s prior version, though the exactly quantifier is new.
Its form is:

exactly n of (var : set) sentence

and it is semantically equivalent to
atleast n of (var : set) sentence
/\ atmost n of (var : set) sentence

3.2.3. Extensions to First Order Logic
LBJ extends the typical semantics of these logical sentences
to allow several unorthodox types of atoms. First (and least
ground-breaking), boolean variables may appear in a fea-
ture statement anywhere an atom normally would. They are
treated as if they are 0-ary predicates.
Second, discrete variables may appear as atoms. When-
ever discrete variables appear as atoms without being com-
pared to a value or another variable via the :: or !: opera-
tors, the feature statement that contains them actually repre-
sents many features, one for each set of values in the cross
product of the variables in question. Each of these fea-
tures will have its own weight in the model. For example,
given a discrete variable A ∈ { "a1", "a2", "a3" } and
a Boolean variable B, the feature A /\ B represents three
separate features: A :: "a1" /\ B, A :: "a2" /\ B,
and A :: "a3" /\ B.
Third, a dictionary with an index of * (e.g. types[*])
may appear as an atom. When it does, each variable in the
dictionary is substituted into the feature in turn, each creat-
ing a new feature statement. These new feature statements
are subject to the same rules described above depending on
whether the substituted variables are Boolean or discrete.4

Thus, it is easy to specify the CCM structure of a multi-
class classifier as we saw in Section 3.1. Special provisions
must be made to accomodate this behavior with logical op-
erators other than conjunction (Cumby and Roth, 2003).
LBJ currently does not make those provisions, but the same
effects are possible with quantifiers and equality predicates.
New to this version of LBJ is the boolean variable, which
is an atomic feature. There is also a new operator for ma-
nipulating Boolean features (though we only envision it
useful when applied to boolean output variables) denoted
ˆ, an example of which appears on line 2 of Figure 1. This
operator changes the range of its argument from {0, 1} to
{−1, 1}, thereby making it possible to model linear thresh-
old units as described in Section 2.1.1.

4. Learning and Inference
So far, we have shown how to define the shape and struc-
ture of a Constrained Conditional Model using Learning
Based Java. The code we have written so far defines that
structure and nothing more; it is completely agnostic to
both learning and inference. From here, with the help of
a sufficiently comprehensive library, the average program-
mer should need only select the algorithms of his choice.
For inference in particular, one of the key advantages to im-
plementing a model as a CCM is that it is always possible
to fall back on Integer Linear Programming (ILP) to solve
the inference problem. Since CCMs keep their objective

4Constraints typically do not make use of discrete variables or
dictionaries as atoms, but if they do, all resulting constraints are
given the same value for their ρ.



1. for (i : (1 .. vars.size()-1))

2. newScores <- double[];
3. for (current : vars[i].values)

4. for (prev : vars[i-1].values)

5. s = scores[prev] + problem.score {vars[i] = current; vars[i-1] = prev};

6. if s > newScores[current] then
7. newScores[current] = s;

8. predictions[i][current] = prev;

9. scores = newScores;

Figure 4: A code sample from an LBJ implementation of the Viterbi algorithm. On line 5, the model returns the score of a
partial assignment to the output variables. This is a computational building block for many inference algorithms.

functions linear and their features and constraints in a logic
language, they can be automatically translated to ILP opti-
mization problems. While ILP is intractable in general, it
has been successful in practice on a variety of tasks, even
when incorporating long range constraints (Punyakanok et
al., 2008; Denis and Baldridge, 2007; Martins et al., 2009).
However, if the task at hand demands a more problem spe-
cific approach, LBJ can help.

4.1. Inference

Inference in LBJ is often as simple as naming the algorithm
and the output variables to apply it to. This is the case in
the following code, where we see the implementation for
an approximate solution to our running SRL example.

1. solver SRLInference :: SRLProblem problem

2. Greedy.solve problem.isArgument[*];

3. ILP.solve problem.types[*];

First it applies a greedy algorithm to the isArgument vari-
ables, literally executing the argmax in equation (2) over
each output variable individually. The resulting assign-
ments for these variables are now fixed, making the job of
the next inference algorithm called a little easier.
However, it is often the case that the structure of the prob-
lem indicates a particularly appropriate algorithm that was
not anticipated in the LBJ library. For example, the HMM
(Section 2.1.3.) is efficiently solved by Viterbi. Of course,
LBJ has a Viterbi implementation, and Figure 4 shows a
snippet from it. But from this snippet, we can see an im-
portant bit of LBJ’s syntactic sugar that makes writing in-
ference algorithms easier. On line 5, the model is queried
for the score of a partial assignment to the output variables.
A partial assignment score query can be performed over
any subset of output variables. The result is the usual eval-
uation of equation (1), except every feature and constraint
function whose evaluation depends on a variable outside the
partial assignment is assumed to return 0. In the context of
a CCM specified in LBJ, the programmer also has access
to the names of the variables and can thereby pick out their
structure to guide his inference procedure. Thus, a host of
ad hoc inference implementations become possible.

4.2. Learning

Like inference algorithms, learning algorithms can be im-
plemented externally and linked to LBJ. However, LBJ also
provides several facilities that make it easier to write learn-

ing algorithms. First, output variables can contain both la-
bels and predicted values. This comes in handy when writ-
ing a supervised learning algorithm. Second, a model can
act as a feature extractor that returns a feature vector. Fea-
tures can be extracted using either the labels or the current
predicted values in the output variables. Third, the lan-
guage contains syntactic sugar that lets models be treated
as weight vectors for the purpose of performing linear al-
gebra with respect to feature vectors. Combined with the
ability to query for the scores of partial assignments as de-
scribed above, the programmer has the necessary tools for
building custom learning solutions quickly.

5. Data Driven Compilation

The biggest advantage to developing a machine learning
framework as a stand-alone language as opposed to a li-
brary for an existing general purpose langauge is that it
opens many opportunities for automatically improving the
efficiency of the code based on high level analyses. LBJ ex-
ploits these analyses with a unique twist, since much of the
information necessary to generate the final program code
is only available in the training data. Thus, we say that an
LBJ compiler performs data-driven compilation. Feature
extraction is perhaps the biggest beneficiary of data driven
compilation.
In most NLP systems, a lexicon associating each feature
with a unique integer index is built from the training data.
These integers are used to index the weight vector, which is
implemented simply as an array. Many NLP systems create
a separate entry in the lexicon’s hash table for every unique
feature. Since many NLP systems have millions of fea-
tures, the resulting code will use a lot of memory and will
be slowed by the abundance of accesses to the hash table.
Lexicons created by LBJ, on the other hand, only store in-
dexes associated with the discrete values each input and
output variable are observed to take. For any discrete vari-
able that can take one of k possible values, each value is
associated with a number between 0 and k − 1 inclusive
in the lexicon. Then they organize the feature index space
so that features that have the same topology while merely
comparing their constituent variables with different values
are grouped together. This will happen frequently, since
features that use discrete variables and dictionaries as atoms
are quite common.
Under this organized feature index space, we can now com-



pute recursively, as functions of the indexes of their subex-
pressions, the indexes of the larger formulas that are active
given a variable assignment. These indexing functions get
their behavior from the connectives used in the feature for-
mulae. For example, if a feature f is a conjunction of two
formulae f1 and f2, its active indexes will take the form
I(f) = kf2I(f1) + I(f2) + Ωf , where kf2 is the number
of features in the same group as f that differ only by value
comparisons made in f2, and Ωf is an offset that ensures
the index space of f begins immediately after the previous
feature’s index space ended.
Disjunction complicates things a little, since many features
in a group of disjunctive features can be active simulta-
neously. For example, when the features A :: "foo"

\/ B :: "bar" and A :: "foo" \/ B :: "baz" are
grouped together, both will be active if the variable A is
set to "foo". The result is that sets of active indexes are
returned up the recursion, and the parent formula’s index
computation loops over the cross product of these sets to
compute its indexes.
The constants in the index formulae can be computed at
compile time, after an initial pass over the data, but before
training begins. The end result is a lexicon orders of magni-
tude smaller and generated code that performs swift feature
extraction, making any algorithm implemented in the lan-
guage more efficient.

6. Conclusion
In this paper we described a modeling formalism for mul-
tivariate models (CCM) and showed that it is appropriate
for a wide variety of NLP tasks. We then developed a pro-
gramming language (LBJ) for specifying the models and
peforming learning and inference over them. Finally, we
showed that the feature extraction syntax of the language
can be compiled to code efficient in both space and time.
Using LBJ, we believe NLP systems that use learning and
inference can be developed rapidly, since the developer will
spend most of his time thinking about the modeling of his
problem from a high level.
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