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Abstract

Typically, structured output scenarios are
characterized by a high cost associated with
obtaining supervised training data, motivat-
ing the study of active learning protocols
for these situations. Starting with active
learning approaches for multiclass classifica-
tion, we first design querying functions for
selecting entire structured instances, explor-
ing the tradeoff between selecting instances
based on a global margin or a combination
of the margin of local classifiers. We then
look at the setting where subcomponents of
the structured instance can be queried in-
dependently and examine the benefit of in-
corporating structural information for active
learning in such scenarios. Empirical results
using these querying functions on both syn-
thetic data and the semantic role labeling
task demonstrate a significant reduction in
the need for supervised training data.

1. Introduction

The successful application of machine learning algo-
rithms to many domains is limited by the inability
to obtain an adequate amount of labeled training data
due to practical constraints associated with the specific
task. The active learning paradigm offers one promis-
ing solution to learning with partially labeled data sets
by allowing the learning algorithm to incrementally se-
lect a subset of the unlabeled data to present for la-
beling by the domain expert with the goal of maximiz-
ing performance while minimizing the labeling effort.
This model is especially appealing when learning in
structured output spaces as the associated application
domains are generally very complex and the cost for
supervised data particularly expensive.

Appearing in Proceedings of the ICML Workshop on Learn-
ing in Structured Output Spaces, Pittsburgh, PA, 2006.
Copyright 2006 by the author(s)/owner(s).

This paper describes a margin-based method for active
learning in structured output spaces where the interde-
pendencies between output variables are described by
a general set of constraints able to represent any struc-
tural form. Specifically, we study two querying proto-
cols and propose novel querying functions for active
learning in structured output spaces: querying com-
plete labels and querying partial labels. We then de-
scribe a particular algorithmic implementation of the
developed theory based on the Perceptron algorithm
and propose a mistake-driven explanation for the rela-
tive performance of the querying functions. Finally, we
provide empirical evidence on both synthetic data and
the semantic role labeling (SRL) task to demonstrate
the effectiveness of the proposed methods.

2. Preliminaries

This work builds upon existing work for learning
in structured output spaces and margin-based active
learning. We first describe a general framework for
learning in structured output, following the approach
of incorporating output variable interdependencies di-
rectly into a discriminative learning model (Collins,
2002; Punyakanok et al., 2005). We then describe pre-
vious margin-based active learning approaches based
on the output of linear classifiers (Tong & Koller, 2001;
Yan et al., 2003).

2.1. Structured Output Spaces

For our setting, let x ∈ Xnx represent an instance in
the space of input variables X = (X1, . . . , Xnx);Xt ∈
Rdt and y ∈ C(Yny ) represent a structured as-
signment in the space of output variables Y =
(Y1, . . . , Yny

);Yt ∈ {ω1, . . . , ωkt
}. C : 2Y

∗ → 2Y
∗

repre-
sents a set of constraints that enforces structural con-
sistency on Y such that C(Yny ) ⊆ Yny . A learning
algorithm for structured output spaces takes m struc-
tured training instances, S = {(x1,y1), . . . , (xm,ym)}
drawn i.i.d over Xnx × C(Yny ) and returns a classifier
h : Xnx → Yny . This assignment generated by h is
based on a global scoring function f : Xnx×Yny → R,
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which assigns a score to each structured instance/label
pair (xi,yi). Given an instance x, the resulting clas-
sification is given by

ŷC = h(x) = argmax
y′∈C(Yny )

f(x,y′). (1)

The output variable assignments are determined by
a global scoring function f(x,y) that can be decom-
posed into local scoring functions fyt(x, t) such that
f(x,y) =

∑ny

t=1 fyt
(x, t). When structural consistency

is not enforced, the global scoring function will out-
put the value f(x, ŷ) resulting in assignments given
by ŷ = argmaxy′∈Yny f(x,y′). An inference mecha-
nism takes the scoring function f(x,y), an instance
(x,y), and a set of constraints C, returning an opti-
mal assignment ŷC based on the global score f(x, ŷC)
consistent with the defined output structure. Specifi-
cally, we will use general constraints with the ability to
represent any structure and thereby require a general
search mechanism for inference to enforce structural
consistency (Daumé III & Marcu, 2005). As active
learning querying functions are very particular about
selecting instances with specific properties, we will de-
fine the notions of locally learnable instances and glob-
ally learnable instances for exposition purposes.

Definition 1 (Locally Learnable Instance) Given
a classifier, f ∈ H, an instance (x,y) is locally learn-
able if fyt

(x, t) > fy′(x, t) for all y′ ∈ Y\yt. In this
situation, ŷC = ŷ = y.

Definition 2 (Globally Learnable Instance)
Given a classifier, f ∈ H, an instance (x,y) is glob-
ally learnable if f(x,y) > f(x,y′) for all y′ ∈ Y\y.
We will refer to instances that are globally learnable,
but not locally learnable as exclusively globally
learnable in which case ŷ 6= ŷC = y.

2.2. Margin-based Active Learning

The key component that distinguishes active learning
from standard supervised learning is a querying func-
tion Q which when given unlabeled data Su and the
current learned classifier returns a set of unlabeled ex-
amples Sselect ⊆ Su. These selected examples are la-
beled by a domain expert and provided to the learning
algorithm to incrementally update its hypothesis. The
most widely used active learning schemes utilize query-
ing functions based on heuristics to reduce the labeling
effort, often based on assigning a measure of certainty
to predictions on the unlabeled data and selecting ex-
amples with low certainty.

We denote the margin of an example relative to the hy-
pothesis function as ρ(x,y, f), noting that this value

is positive if and only if ŷC = y and the magnitude is
associated with the confidence in the prediction. The
specific definition of margin for a given setting is gener-
ally dependent on the description of the output space.
A margin-based learning algorithm is a learning algo-
rithm which selects a hypothesis by minimizing a loss
function L : R→ [0,∞) using the margin of instances
contained in Sl. We correspondingly define an active
learning algorithm with a querying function dependent
on ρ(x,y, f) as a margin-based active learning algo-
rithm.

The standard active learning algorithm for binary clas-
sification, Y ∈ {−1, 1}, with linear functions utilizes
the querying function Qbinary (Tong & Koller, 2001),
which makes direct use of the margin ρbinary(x, y, f) =
y · f(x) by assuming the current classifier makes cor-
rect predictions on the labeled examples, selecting
those unlabeled examples with the smallest margin
and thereby the least certainty,

Qbinary : x? = argmin
x∈Su

|f(x)|.

For multiclass classification with a winner-take-all net-
work, a widely accepted definition for multiclass mar-
gin is ρmulticlass(x,y, f) = fy(x)−fẏ(x), where y rep-
resents the true label and ẏ represents the highest ac-
tivation value such that ẏ 6= y (Har-Peled et al., 2003).
Previous work on multiclass active learning (Yan et al.,
2003) advocate a querying function closely related to
using this definition of multiclass margin,

Qmulticlass : x? = argmin
x∈Su

[fŷ(x)− fỹ(x)],

where ŷ represents the predicted label and ỹ represents
the label with the second highest activation value.

3. Active Learning for Structures

We look to augment the aforementioned work to design
querying functions for learning in structured output
spaces by exploiting structural knowledge not available
for individual classifications. To formalize the task of
querying labels in a structured learning scenario, we
separate the labels of an instance/label pair (x,y) into
yl and yu, representing which labels are available and
unavailable respectively. Without loss of generality, we
assume that yt represents a multiclass classification.

3.1. Querying Complete Labels

The task of designing a querying function for complete
labels entails selecting instances x such that all out-
put labels associated with the specified instance will be
provided by the domain expert. More formally, com-
plete label querying functions select examples from the
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set (x,yl = ∅,yu = y) ∈ Su and receives a labeled in-
stance (x,yl = y,yu = ∅) ∈ Sselect for training.

Following the margin-based justification for design-
ing querying functions, a common definition of mar-
gin for learning in structured output spaces is given
by ρglobal(x,y, f) = f(x,y) − f(x, ẏC) where ẏC is
the highest activation value consistent with the output
structure such that ẏC 6= y. The corresponding query-
ing function for a structured learner that incorporates
the constraints into the learning model is defined by

Qglobal : x? = argmin
x∈Su

[f(x, ŷC)− f(x, ỹC)],

where ŷC is the predicted labeling and ỹC is the la-
beling associated with the second highest activation,
both consistent with structural constraints.

It should be noted that Qglobal does not necessarily
require the scoring function f(x,y) to be decompos-
able, thereby allowing its use with an arbitrary loss
function. The only requirement is that the inference
algorithm is able to return both f(x, ŷC) and f(x, ỹC)
for a given structured instance. However, for many
structured learning settings, the scoring function and
consequently the loss function is able to be decom-
posed into local classification problems. Furthermore,
it has been observed that when the local classification
problems are easy to learn without regard for struc-
tural constraints, directly optimizing these local func-
tions often leads to a lower sample complexity (Pun-
yakanok et al., 2005). Since this lower sample com-
plexity is predicated on making concurrent local up-
dates for each structured instance, it may be desirable
to select examples that make as many local updates
as possible for such situations. This observation mo-
tivates designing a querying function that selects in-
stances based on optimization of local predictions. If
we view the individual output variable predictions in-
dependently, a reasonable margin-based strategy is to
select examples with a small average local multiclass
margin,

Q
local(C)

: x? = argmin
x∈Su

∑ny

t=1[fŷC,t
(x, t)− fỹC,t

(x, t)]
ny

where ŷC,t represents the local predicted label consis-
tent with the global constraints and ỹC,t represents the
second highest valued local prediction consistent with
global constraints.

3.2. Querying Partial Labels

As Qglobal is the least restrictive querying function,
making no assumptions regarding decomposability of
of the scoring function, andQ

local(C)
requires only that

the scoring function be decomposable in accordance
with the local output variables, we also explore active
learning for structured output in settings where local
output variables can be queried independently, defined
as querying partial labels. More formally, partial la-
bel querying functions select examples from the set
(x,yl,yu) ∈ Su and receives from the domain expert a
label for the local output variable yq, thereby moving
yq from yu to yl for that specific instance.

The intuitive benefit of querying partial labels is that
we no longer select entire instances and are thereby not
hindered by cases where the label of one local output
variable is very informative, but other output variables
associated with the same instance are minimally use-
ful, but still add cost to the labeling effort. Conversely,
this configuration is not immediately usable for appli-
cations not easily decomposable into local output vari-
ables that can be independently queried. Secondly,
there is a fixed cost of a domain expert labeling struc-
tured instances associated with processing the entire
instance which would normally be amortized over the
individual output assignments. However, as we shall
see, this approach is very beneficial in scenarios where
querying partial labels is possible.

Noting that querying partial labels is essentially re-
questing a single multiclass classification, the naive
approach to active learning in this case is to simply
ignore the structural information and use Qmulticlass,
resulting in the querying function

Qlocal : (x, t)? = argmin
(x,yt)∈Su

t=1,...,ny

[fŷt
(x, t)− fỹt

(x, t)].

One of the stronger arguments for margin-based ac-
tive learning is the notion of selecting instances which
attempt to halve the version space with each selec-
tion (Tong & Koller, 2001). A local classifier which ei-
ther ignores or is ignorant of the structural constraints
maintains a version space described by

Vlocal = {f ∈ H|fyt
(x, t) > fẏt

(x, t);∀(x, y) ∈ Sl}.

If the learning algorithm has access to an inference
mechanism that maintains structural consistency, the
version space is only dependent on the subset of pos-
sible output variable assignments that are consistent
with the global structure,

Vlocal(C) = {f ∈ H|fyt
(x, t) > fẏC,t

(x, t);∀(x, y) ∈ Sl}

where ẏC,t represents the highest local activation value
of a predicted label consistent with the global con-
straints such that ẏC,t 6= y. Therefore, if the learning
algorithm incorporates structural consistency directly
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into the learning model, we advocate also utilizing this
information to augment Qlocal, resulting in the query-
ing function

Qlocal(C) : (x, t)? = argmin
(x,yt)∈Su

t=1,...,ny

[fŷC,t
(x, t)− fỹC,t

(x, t)].

In addition to the version space justification, there are
other reasons to exploit structural knowledge in the
design of an active learning querying function for par-
tial labels. First of all, if the data is locally separable,
Qlocal(C) becomes Qlocal with the only cost being com-
putation associated with inference. Secondly, as other
labels within a structured instance become visible, a
notion similar to correction propagation (Culotta &
McCallum, 2005) becomes possible. In addition to the
global constraints, each partial label queried further
constrains the other output variables of a structured
instance, reducing the consistent output space size at
each step. In many cases, this process dramatically
reduces the output space for the remaining local vari-
ables, reducing the need for further partial queries.

4. Active Learning with Perceptron

This work specifically utilizes classifiers of a linear rep-
resentation with parameters learned using the Percep-
tron algorithm. In this case, f(x,y) = α · Φ(x,y)
represents the global scoring function such that α =
(α1, . . . ,α|Y|) is a concatenation of the local αy vec-
tors and Φ(x,y) = (Φ1(x,y), . . . ,Φ|Y|(x,y)) is a con-
catenation of the local feature vectors, Φy(x,y). Uti-
lizing this notation, fy(x, t) = αy ·Φy(x, t) where αy ∈
Rdy is the learned weight vector and Φy(x, t) ∈ Rdy is
the feature vector for local classifications.

4.1. Inference Based Training

Margin-based active learning generally relies upon the
use of support vector machines (SVM) (Tong & Koller,
2001; Yan et al., 2003). While there is existing
work on SVM for structured output (Tsochantaridis
et al., 2004), the incremental nature of active learning
over large data sets associated with structured output
makes these algorithms impractical for such uses. This
work builds upon the inference based training (IBT)
learning strategy (Punyakanok et al., 2005; Collins,
2002) shown in Table 1, which incorporates the struc-
tural knowledge into the learning procedure. We first
modify the IBT algorithm for partial labels by updat-
ing only local components with visible labels. Sec-
ondly, we add a notion of large margin IBT heuristi-
cally by requiring thick separation between class acti-
vations. While this can likely be tuned to improve

Table 1. Learning wth Inference Based Feedback (IBT)

Input: S ∈ {X ∗ × Y∗}m, γ, T

Initialize α← 0
Repeat for T iterations

foreach (x,y) ∈ S
ŷC ← argmaxy∈C(Yny ) α · Φ(x,y)
foreach t = 1, . . . , ny such that (x, yt) ∈ Sl

if fyt
(x, t)− γ < fẏt

(x, t)
αyt ← αyt + Φyt(x, t)
αẏt ← αẏt − Φẏt(x, t)

Output: {fy}y∈Y ∈ H

performance depending on the data, we simply set
γ = 1.0 and require that ‖Φyt(x, t)‖ = 1 through nor-
malization for our experiments. During learning, we
set T = 7 for synthetic data and T = 5 for experiments
with the SRL task. To infer ŷC , we use an index or-
dered beam search with beam size of 50 for synthetic
data and 100 for SRL. Beam search was used since it
performs well, is computationally fast, accommodates
general constraints, and returns a global score ranking
which is required for Qglobal.

4.2. Mistake-driven Active Learning

A greedy criteria for active learning querying functions
makes the most immediate progress towards learning
the target function with each requested label. For
the mistake-driven Perceptron algorithm, a reasonable
heuristic for measuring progress is to track the num-
ber of additive updates for each query. This intuition
proposes two metrics to explain the performance re-
sults of a given querying function, average Hamming
error per query, MHamming, and average global er-
ror per query, Mglobal. For a specific round of ac-
tive learning, the current hypothesis is used to se-
lect a set of instances Sselect for labeling. Once the
labels are received, we calculate the Hamming loss
H(h,x) =

∑ny

t=1;(x,yt)∈Sl
IJŷC,t 6= yK and the global

loss G(h,x) = IJŷC 6= yK at the time when the in-
stance is first labeled. IJpK is an indicator function
such that IJpK = 1 if p is true and 0 otherwise. We
measure the quality of a querying function relative to
the average of these values for all queries up to the
specific round of active learning.

Noting that only H(h,x) is useful for partial labels,
we hypothesize that for partial label queries or cases
of complete label queries where the data sample S
is largely locally separable, the relative magnitude of
MHamming will determine the relative performance
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of the querying functions. Alternatively, in the case
of complete queries where the data has a significant
portion that is exclusively globally separable,Mglobal

will be more strongly correlated with querying func-
tion performance.

5. Experiments

To demonstrate particular properties of the proposed
querying functions, we first run active learning simu-
lations on synthetic data. Then, to verify that these
methods are practical for actual applications, we per-
form experiments on the SRL task.

5.1. Synthetic Data

Our synthetic structured output problem is comprised
of five multiclass classifiers, h1, . . . , h5, each having the
output space Yi = ω1, . . . , ω4. In addition, we define
the output structure using the following practical con-
straints:

1. C1 : [h2(x) 6= ω3] ∧ [h5(x) 6= ω1]

2. C2 : At most one hi(x) can output ω2.

3. C3 : For one or more hi(x) to output ω3, at least
one hi(x) must output ω1.

4. C4 : hi(x) can output ω4 if and only if hi−1(x) =
ω1 and hi−2(x) = ω2.

To generate the synthetic data, we first create four
linear functions of the form wi · x + bi such that
wi = [−1, 1]100 and bi = [−1, 1] for each hi. We
then generate 5 examples in the space {0, 1}100 such
that n features determined by the normal distribu-
tion N (20, 5) are assigned the value 1, distributed uni-
formly over the feature vector. Each vector is labeled
according to the function argmaxt=1,...,k[wt ·x+bi] re-
sulting in the label vector ylocal = (h1(x), . . . , h5(x)).
We then run the inference procedure to obtain the fi-
nal labeling of the data y. If y 6= ylocal, then the data
is exclusively globally separable. We control the total
amount of such data with the parameter κ which rep-
resents the fraction of exclusively globally separable
data in S. We further filter the difficulty of the data
such that all exclusively globally separable instances
have a Hamming error drawn from a stated normal
distribution. We generate 10000 structured examples,
or equivalently 50000 local instances, in this fashion
for each set of data parameters we use.

Figure 1 shows the experimental results for the de-
scribed complete querying functions in addition to
Qlocal(C) where an entire structured instance is based

upon the score of a single local classifier to demon-
strate that it is prudent to design querying functions
specifically for complete labels. The querying schedule
starts as |Sl| = 2, 4, . . . , 200 and slowly increases step
size until |Sl| = 6000, 6100, . . . , 8000 and 5-fold cross
validation is performed. The primary observation for
the synthetic data set where κ = 0.0 is that Q

local(C)

performs better than Qglobal when the data is locally
separable. For the data set where κ = 0.3;N (3, 1),
we see that as the data becomes less locally separable,
Qglobal performs better than Q

local(C)
. We also plot

MHamming and Mglobal for each respective querying
functions. As expected, when the data is locally sep-
arable, the querying function performance is closely
related to MHamming and when the data is not lo-
cally separable, the relative querying function perfor-
mance is more closely related to Mglobal. The verti-
cal lines denote when the specified querying function
achieves an accuracy equivalent to the largest accu-
racy achieved by using Qrandom. Remembering that
there are 8000 training examples, we measure between
25%− 75% reduction in required training data.

Figure 2 shows our experimental results for partial
querying functions using synthetic data. We ran the
two partial querying functions Qlocal and Qlocal(C)

in addition to Qrandom, which selects arbitrary unla-
beled instances at each step, on three sets of data.
The querying schedule starts by querying 10 par-
tial labels at a time from |Sl| = 10, 20, . . . , 2000
and increases slowly until the step size is |Sl| =
20000, 21000, . . . , 40000 and once again 5-fold cross
validation is performed. The first synthetic data set
is where κ = 0.0, where the data is completely locally
separable. In this case, active learning for both Qlocal

andQlocal(C) perform better thanQrandom. Somewhat
more surprising is the result that Qlocal(C) performs
noticeably better that Qlocal even though they should
query similar points for κ = 0.0. The results for the
synthetic data set κ = 0.3;N (3, 1) also demonstrate
a similar ordering where Qlocal(C) outperforms Qlocal

which in turn outperforms Qrandom. Finally, we used
a synthetic data set where κ = 1.0;N (5, 1), meaning
that the data is completely exclusively globally sepa-
rable and the difference between Qlocal(C) and Qlocal

is most noticable. For this data set, we also plotted
MHamming noting that this value is always greater
for Qlocal(C) than Qlocal, which is consistent with our
expectations forMHamming relative to querying func-
tion performance. As there are 40000 training exam-
ples for each fold, we show a decrease in necessary
data of between 65%− 79% depending on the specific
experiment.
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Figure 1. Experimental results for the complete label querying problem, noting that the labeling effort is reduced between
25% − 75% depending of the particular situation. (a) Active learning curve for κ = 0.0 (b) Active learning curve for
κ = 0.3;N (3, 1) (c) Plot of Mhamming and Mglobal for κ = 0.0 (d) Plot of Mhamming and Mglobal for κ = 0.3;N (3, 1)

5.2. Semantic Role Labeling

We also perform experiments on the SRL task as de-
scribed in the CoNLL-2004 shared task (Carreras &
Màrquez, 2004). We essentially follow the model de-
scribed in (Punyakanok et al., 2005) where linear clas-
sifiers fA0, fA1, . . . are used to map constituent candi-
dates to one of 45 different classes. For a given argu-
ment / predicate pair, the multiclass classifier returns
a set of scores which are used to produce the output ŷC
consistent with the structural constraints associated
with other arguments relative to the same predicate.
We simplify the task by assuming that the constituent
boundaries are given, making this an argument clas-
sification task. We use the CoNLL-2004 shared task
data, but restrict our experiments to sentences that
have greater than five arguments to increase the num-
ber of instances with interdependent variables and take
a random subset of this to get 1500 structured ex-
amples comprised of 9327 local predictions. For our
testing data, we also restrict ourself to sentences with
greater than five arguments, resulting in 301 struc-
tured instances comprised of 1862 local predictions.

We use the same features and the applicable subset
of families of constraints which do not concern seg-
mentation as described by (Punyakanok et al., 2004).
Figure 3 shows the emperical results for the SRL ex-
periments. For querying complete labels, we start with
a querying schedule of |Sl| = 100, 200, . . . , 500 and
slowly increase the step size until ending with |Sl| =
1000, 1100, . . . , 1500. For the complete labeling case,
Q

local(C)
performs better than Qglobal, implying that

the data largely locally separable which is consistent
with the findings of (Punyakanok et al., 2005). Fur-
thermore, both functions perform better thanQrandom

with approximately a 35% reduction in labeling ef-
fort. For partial labels, we used a querying sched-
ule that start at |Sl| = 100, 200, . . . , 500 and increases
step size until ending at |Sl| = 6000, 7000, . . . , 9327.
In this case, Qlocal(C) performs better than Qlocal and
Qrandom, requiring only about half of the data to be
labeled.
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Figure 2. Experimental results for the partial label querying problem, noting that the labeling effort is reduced between
65% − 79% depending on the specific experiment. (a) Active learning curve for κ = 0.0 (b) Active learning curve for
κ = 0.3;N (3, 1) (c) Active learning curve for κ = 1.0;N (5, 1) (d) Plot of Mhamming for κ = 1.0;N (5, 1).

6. Related Work

Some of the earliest works on active learning in a struc-
tured setting is the work in language parsing includ-
ing (Thompson et al., 1999; Hwa, 2000), which utilize
specific properties of the parsing algorithms to assign
uncertainty values. There has also been work on active
learning for hidden markov models (HMM), summa-
rized by (Anderson & Moore, 2005), which is a learn-
ing algorithm for structured output with a specific set
of sequential constraints. More directly related is the
active learning work using conditional random fields
(CRFs) (Culotta & McCallum, 2005), which can the-
oretically incorporate general constraints, basing se-
lection on a probabilistic uncertainty metric. In this
case, the complete labels are selected and the empha-
sis is on reducing the actual cost of labeling through a
more sophisticated interaction with the expert.

7. Conclusions and Future Work

This work describes a margin-based active learning ap-
proach for structured output spaces. We first look

at the setting of querying complete labels, defining
Qglobal to be used in situations where the scoring func-
tion f(x,y) is not decomposable or the data is ex-
pected to be exclusively globally learnable and de-
fine Q

local(C)
to be used when the scoring function

is decomposable and the data is expected to be lo-
cally learnable. We further demonstrate that in cases
where the local classifications can be queried indepen-
dently, the labeling effort is most drastically reduced
using partial label queries. These propositions are also
supported empirically on both synthetic data and the
semantic role labeling (SRL) task. There appears to
be many dimensions for future work including exam-
ining scenarios where subsets of the output variables
are queried, providing a continuum between single and
complete labels. Furthermore, developing a more re-
alistic model of labeling cost along this continuum
and looking at the performance of other margin-based
learning algorithms within this framework would likely
enable this work to be applied to a wider range of
structured output applications.
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Figure 3. Experimental results for semantic role labeling (SRL) task. (a) Active learning curve for the complete label
querying scenario (b) Active learning curve for the partial label querying scenario
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