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Natural language decisions often involve assigning values to sets of variables, rep-

resenting low level decisions and context dependent disambiguation. In most cases

there are complex relationships among these variables representing dependencies

that range from simple statistical correlations to those that are constrained by

deeper structural, relational and semantic properties of the text.

In this work we study a specific instantiation of this problem in the context of

identifying named entities and relations between them in free form text. Given

a collection of discrete random variables representing outcomes of learned local

predictors for entities and relations, we seek an optimal global assignment to the

variables that respects multiple constraints, including constraints on the type of

arguments a relation can take, and the mutual activity of different relations.

We develop a linear programming formulation to address this global inference

problem and evaluate it in the context of simultaneously learning named entities

and relations. We show that global inference improves stand-alone learning; in

addition, our approach allows us to efficiently incorporate expressive domain and

task specific constraints at decision time, resulting, beyond significant improvements

in the accuracy, in “coherent” quality of the inference.
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1.1 Introduction

In a variety of AI problems there is a need to learn, represent and reason with respect

to definitions over structured and relational data. Examples include learning to

identify properties of text fragments such as functional phrases and named entities,

identifying relations such as “A is the assassin of B” in text, learning to classify

molecules for mutagenicity from atom-bond data in drug design, learning to identify

3D objects in their natural surrounding and learning a policy to map goals to actions

in planning domains.

Learning to make decisions with respect to natural language input is a prime source

of examples for the need to represent, learn and reason with structured and rela-

tional data [Cumby and Roth, 2000, 2003, Even-Zohar and Roth, 2000, Khardon

et al., 1999]. Natural language tasks presents several challenges to statistical rela-

tional learning (SRL). It is necessary (1) to represent structured domain elements

in the sense that their internal (hierarchical) structure can be encoded, and learn-

ing functions in these terms can be supported, and (2) it is essential to represent

concepts and functions relationally, in the sense that different data instantiations

may be abstracted to yield the same representation, so that evaluation of functions

over different instantiations will produce the same output. Moreover, beyond hav-

ing to deal with structured input, in many natural language understanding tasks

there is a rich relational structure also on the output of predictors. Natural language

decisions often depend on the outcomes of several different but mutually dependent

predictions. These predictions must respect some constraints that could arise from

the nature of the data or from domain-specific conditions. For example, in part-

of-speech tagging, a sentence must have at least one verb, and cannot have three

consecutive verbs. These facts can be used as constraints. In named entity recog-

nition, “no entities overlap” is a common constraint used in various works [Tjong

Kim Sang and De Meulder, 2003]. When predicting whether phrases in sentences

represent entities and determining their type, the relations between the candidate

entities provide constraints on their allowed (or plausible) types, via selectional

restrictions.

While the classifiers involved in these global decisions need to exploit the relational

structure in the input [Roth and Yih, 2001], we will not discuss these issues here,

and will focus here instead on the task of inference with the classifiers’ outcomes.

Namely, this work is concerned with the relational structure over the outcomes

of predictors, and studies natural language inferences which exploit the global

structure of the problem, aiming at making decisions which depend on the outcomes

of several different but mutually dependent classifiers.

Efficient solutions to problems of this sort have been given when the constraints on

the predictors are sequential [Punyakanok and Roth, 2001, Dietterich, 2002]. These

solutions can be categorized into the following two frameworks. The first, which

we call learning global models, trains a probabilistic model under the constraints

imposed by the domain. Examples include variations of HMMs, conditional models
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and sequential variations of Markov random fields [Lafferty et al., 2001]. The other

framework, inference with classifiers [Roth, 2002], views maintaining constraints

and learning component classifiers as separate processes. Various local classifiers

are trained without the knowledge of the global output constraints. The predictions

are taken as input to an inference procedure which is given these constraints and

then finds the best global prediction. In addition to the conceptual simplicity and

modularity of this approach, it is more efficient than the global training approach,

and seems to perform better experimentally in some tasks [Tjong Kim Sang and

De Meulder, 2003, Punyakanok et al., 2005, Roth and Yih, 2005].

Typically, efficient inference procedures in both frameworks rely on dynamic pro-

gramming (e.g., Viterbi), which works well for sequential data. However, in many

important problems, the structure is more general, resulting in computationally in-

tractable inference. Problems of these sorts have been studied in computer vision,

where inference is generally performed over low level measurements rather than

over higher level predictors [Levin et al., 2002, Boykov et al., 2001].

This work develops a novel inference with classifiers approach. Rather than being

restricted to sequential data, we study a fairly general setting. The problem is

defined in terms of a collection of discrete random variables representing binary

relations and their arguments; we seek an optimal assignment to the variables in the

presence of the constraints on the binary relations between variables and the relation

types. Following ideas that were developed recently in the context of approximation

algorithms [Chekuri et al., 2001], we model inference as an optimization problem,

and show how to cast it in a linear programming formulation. Using existing

numerical packages, which are able to solve very large linear programming problems

in a very short time1, inference can be done very quickly.

Our approach could be contrasted with other approaches to sequential inference

or to general Markov random field approaches [Lafferty et al., 2001, Taskar et al.,

2002]. The key difference is that in these approaches, the model is learned globally,

under the constraints imposed by the domain. Our approach is designed to address

also cases in which some of the local classifiers are learned (or acquired otherwise) in

other contexts and at other times, or incorporated as background knowledge. That

is, some components of the global decision need not, or cannot, be trained in the

context of the decision problem. This way, our approach allows the incorporation

of constraints into decisions in a dynamic fashion and can therefore support task-

specific inference. The significance of this is clearly shown in our experimental

results.

We develop our model in the context of natural language inference and evaluate it

here on the problem of simultaneously recognizing named entities and relations be-

tween them. For instance, in the sentence “J. V. Oswald was murdered at JFK

after his assassin, R. U. KFJ shot...”, we want to identify the kill (KFJ,

1. For example, CPLEX [2003] is able to solve a linear programming problem of 13 million
variables within 5 minutes.
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Oswald) relation. This task requires making several local decisions, such as identi-

fying named entities in the sentence, in order to support the relation identification.

For example, it may be useful to identify that Oswald and KFJ are people, and

JFK is a location. This, in turn, may help to identify that a kill action is described

in the sentence. At the same time, the relation kill constrains its arguments to be

people (or at least, not to be locations) and helps to enforce that Oswald and KFJ

are likely to be people, while JFK may not.

In our model, we first learn a collection of “local” predictors, e.g., entity and relation

identifiers. At decision time, given a sentence, we produce a global decision that

optimizes over the suggestions of the classifiers that are active in the sentence,

known constraints among them and, potentially, domain-specific or task-specific

constraints relevant to the current decision. Although a brute-force algorithm may

seem feasible for short sentences, as the number of entity variable grows, the

computation becomes intractable very quickly. Given n entities in a sentence, there

are O(n2) possible binary relations between them. Assume that each variable (entity

or relation) can take l labels (“none” is one of these labels). Thus, there are ln
2

possible assignments, which is too large to explicitly enumerate even for a small n.

When evaluated on simultaneous learning of named entities and relations, our

approach not only provides a significant improvement in the predictors’ accuracy;

more importantly, it provides coherent solutions. While many statistical methods

make “incoherent” mistakes (i.e., inconsistency among predictions), that no human

ever makes, as we show, our approach improves also the quality of the inference

significantly.

The rest of the paper is organized as follows. Section 1.2 formally defines our prob-

lem and Section 1.3 describes the computational approach we propose. Experimen-

tal results are given in Section 1.5, including a case study that illustrates how our

inference procedure improves the performance. We introduce some common infer-

ence methods used in various text problems as comparison in Section 1.6, followed

by some discussions and conclusions in Section 1.7.

1.2 The Relational Inference Problem

We consider the relational inference problem within the reasoning with classifiers

paradigm, and study a specific but fairly general instantiation of this problem,

motivated by the problem of recognizing named entities (e.g., persons, locations,

organization names) and relations between them (e.g. work for, located in, live in).

Conceptually, the entities and relations can be viewed, taking into account the

mutual dependencies, as the graph shown in Figure 1.1, where the nodes represent

entities (e.g., phrases) and the links denote the binary relations between the entities.

Each entity and relation has several properties. Some of the properties, such as

words inside the entities and POS tags of words in the context of the sentence, are

easy to acquire. However, other properties like the semantic types (i.e., class labels,

such as “people” or “locations”) of phrases are difficult. Identifying the labels of
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entities and relations is treated here as a learning problem. In particular, we learn

these target properties as functions of all other properties of the sentence.
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Figure 1.1 A conceptual view of entities and relations

To describe the problem in a formal way, we first define sentences and entities as

follows.

Definition 1.1 (Sentence & Entities)

A sentence S is a linked list which consists of words w and entities E . An entity can

be a single word or a set of consecutive words with a predefined boundary. Entities

in a sentence are labeled as E = {E1, E2, · · · , En} according to their order, and

they take values (i.e., labels) that range over a set of entity types LE . The value

assigned to Ei ∈ E is denoted fEi
∈ LE .

Notice that determining the entity boundaries is also a difficult problem – the

segmentation (or phrase detection) problem [Abney, 1991, Punyakanok and Roth,

2001]. Here we assume it is solved and given to us as input; thus we only concentrate

on classification.

Dole ’s wife , Elizabeth , is a native of Salisbury , N.C.
 E1         E2                E3

Figure 1.2 A sentence that has three entities

Example 1.1

The sentence in Figure 1.2 has three entities: E1 = “Dole”, E2 = “Elizabeth”, and

E3 = “Salisbury, N.C.”

A relation is defined by the entities that are involved in it (its arguments). Note
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that we only discuss binary relations.

Definition 1.2 (Relations)

A (binary) relation Rij = (Ei, Ej) represents the relation between Ei and Ej , where

Ei is the first argument and Ej is the second. In addition, Rij can range over a set of

entity types LR. We use R = {Rij}{1≤i,j≤n;i6=j} as the set of binary relations on the

entities E in a sentence. Two special functions N 1 and N 2 are used to indicate the

argument entities of a relation Rij . Specifically, Ei = N 1(Rij) and Ej = N 2(Rij).

Note that in this definition, the relations are directed (e.g., there are both Rij and

Rji variables). This is because the arguments in a relation often take different roles

and have to be distinguished. Examples of this sort include work for, located in and

live in. If a relation variable Rij is predicted as a mutual relation (e.g., spouse of ),

then the corresponding relation Rji should be also assigned the same label. This

additional constraint can be easily incorporated in our inference framework. Also

notice that we simplify the definition slightly by not considering self-relations (e.g.,

Rii). This can be relaxed if this type of relations appear in the data.

Example 1.2

In the sentence given in Figure 1.2, there are six relations between the entities: R12

= (“Dole”, “Elizabeth”), R21 = (“Elizabeth”, “Dole”), R13 = (“Dole”, “Salisbury,

N.C.”), R31 = (“Salisbury, N.C.”, “Dole”), R23 = (“Elizabeth”, “Salisbury, N.C.”),

and R32 = (“Salisbury, N.C.”, “Elizabeth”)

We define the types (i.e., classes) of relations and entities as follows.

Definition 1.3 (Classes)

We denote the set of predefined entity classes and relation classes as LE and LR

respectively. LE has one special element other ent, which represents any unlisted

entity class. Similarly, LR also has one special element other rel, which means the

involved entities are irrelevant or the relation class is undefined.

When it is clear from the context, we use Ei and Rij to refer to the entity and

relation, as well as their types (class labels). Note that each relation and entity

variable can take only one class according to Definition 1.3. Although there may

be different relations between two entities, it seldom occurs in the data. Therefore,

we ignore this issue for now.

Example 1.3

Suppose LE = { other ent, person, location } and LR = { other rel, born in,

spouse of }. For the entities in Figure 1.2, E1 and E2 belong to person and E3

belongs to location. In addition, relation R23 is born in, R12 and R21 are spouse of.

Other relations are other rel.

Given a sentence, we want to predict the labels of a set V which consists of two

types of variables – entities E and relations R. That is, V = E ∪ R. However, the

class label of a single entity or relation depends not only on its local properties,

but also on the properties of other entities and relations. The classification task
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is somewhat difficult since the predictions of entity labels and relation labels are

mutually dependent. For instance, the class label of E1 depends on the class label of

R12 and the class label of R12 also depends on the class label of E1 and E2. While

we can assume that all the data is annotated for training purposes, this cannot be

assumed at evaluation time. We may presume that some local properties such as

the words or POS tags are given, but none of the class labels for entities or relations

is.

To simplify the complexity of the interaction within the graph but still preserve the

characteristic of mutual dependency, we abstract this classification problem in the

following probabilistic framework. First, the classifiers are trained independently

and used to estimate the probabilities of assigning different labels given the ob-

servation (that is, the easily classified properties in it). Then, the output of the

classifiers is used as a conditional distribution for each entity and relation, given

the observation. This information, along with the constraints among the relations

and entities, is used to make global inference.

In the task of entity and relation recognition, there exist some constraints on the

labels of corresponding relation and entity variables. For instance, if the relation

is live in, then the first entity should be a person, and the second entity should

be a location. The correspondence between the relation and entity variables can be

represented by a bipartite graph. Each relation variable Rij is connected to its first

entity Ei , and second entity Ej . We define a set of constraints on the outcomes of

the variables in V as follows.

Definition 1.4 (Constraints)

A constraint is a function that maps a relation label and an entity label to either

0 or 1 (contradict or satisfy the constraint). Specifically, C1 : LR × LE → {0, 1}

constrains values of the first argument of a relation. C2 is defined similarly and

constrains values of the second argument.

Note that while we define the constraints here as Boolean functions, our formal-

ism allows us to associate weights with constraints and to include statistical con-

straints [Roth and Yih, 2005]. Also note that we can define a large number of

constraints, such as CR : LR ×LR → {0, 1} which constrain the labels of two rela-

tion variables. For example, we can define a set of constraints on a mutual relation

spouse of as {(spouse of, spouse of) = 1, (spouse of, lr) = 0 and (lr, spouse of) = 0

for any lr ∈ LR, where lr 6= spouse of}. By enforcing these constraints on a pair

of symmetric relation variables Rij and Rji, the relation class spouse of will be

assigned to either both Rij and Rji or none of them. In fact, as will be clear in Sec-

tion 1.3, the language used to describe constraints is very rich – linear (in)equalities

over V.

We seek an inference algorithm that can produce a coherent labeling of entities

and relations in a given sentence. Furthermore, it optimizes an objective function

based on the conditional probabilities or other confidence scores estimated by the

entity and relation classifiers, subject to some natural constraints. Examples of

these constraints include whether specific entities can be the argument of specific
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relations, whether two relations can occur together among a subset of entity

variables in a sentence, and any other information that might be available at the

inference time. For instance, suppose it is known that entities A and B represent the

same location; one may like to incorporate an additional constraint that prevents

an inference of the type: “C lives in A; C does not live in B.”

We note that a large number of problems can be modeled this way. Examples include

problems such as chunking sentences [Punyakanok and Roth, 2001], coreference

resolution and sequencing problems in computational biology, and the recently

popular problem of semantic role labeling [Carreras and Màrquez, 2004, 2005].

In fact, each of the components of our problem here, namely the separate task

of recognizing named entities in sentences and the task of recognizing semantic

relations between phrases, can be modeled this way. However, our goal is specifically

to consider interacting problems at different levels, resulting in more complex

constraints among them, and exhibit the power of our method.

1.3 Integer Linear Programming Inference

The most direct way to formalize our inference problem is using Markov Random

Fields (MRF) [Chellappa and Jain, 1993]. Rather than doing that, for computa-

tional reasons, we first use a fairly standard transformation of MRF to a discrete

optimization problem (see [Kleinberg and Tardos, 1999] for details). Specifically,

under weak assumptions we can view the inference problem as the following opti-

mization problem, which aims at minimizing the objective function that is the sum

of the following two cost functions.

Assignment cost: This is the cost of deviating from the assignment of the

variables V given by the classifiers. The specific cost function we use is defined

as follows: Let l be the label assigned to variable u ∈ V. If the posterior probability

estimation is p = P (fu = l|x̄), where x̄ represents the input feature vector, then

the assignment cost cu(l) is − log p.

Constraint cost: This is the cost imposed by breaking constraints between

neighboring nodes. The specific cost function we use is defined as follows: Consider

two entity nodes Ei, Ej and its corresponding relation node Rij ; that is, Ei =

N 1(Rij) and Ej = N 2(Rij). The constraint cost indicates whether the labels

are consistent with the constraints. In particular, we use: d1(fEi
, fRij

) is 0 if

(fRij
, fEi

) ∈ C1; otherwise, d1(fEi
, fRij

) is ∞ 2. Similarly, we use d2 to force the

consistency of the second argument of a relation.

Since we are looking for the most probable global assignment that satisfies the

constraints, the overall cost function we optimize for a global labeling f of all

2. In practice, we use a very large number (e.g., 915).
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variables is:

C(f) =
∑

u∈V

cu(fu) +
∑

Rij∈R

[

d1(fRij
, fEi

) + d2(fRij
, fEj

)
]

(1.1)

Unfortunately, this combinatorial problem (Equation 1.1) is computationally in-

tractable even when placing assumptions on the cost function [Kleinberg and Tar-

dos, 1999]. The computational approach we adopt is to develop a linear program-

ming (LP) formulation of the problem, and then solve the corresponding integer

linear programming (ILP) problem3. Our LP formulation is based on the method

proposed by Chekuri et al. [2001]. Since the objective function (Equation 1.1) is

not a linear function in terms of the labels, we introduce new binary variables to

represent different possible assignments to each original variable; we then represent

the objective function as a linear function of these binary variables.

Let x{u,i} be an indicator variable, defined to be 1 if and only if variable u is

labeled i and 0 otherwise, where u ∈ E , i ∈ LE or u ∈ R, i ∈ LR. For example,

x{E1,person} = 1 when the label of entity E1 is person; x{R23,spouse of} = 0 when

the label of relation R23 is not spouse of. Let x{Rij ,r,Ei,e1} be an indicator variable

representing whether relation Rij is assigned label r and its first argument, Ei,

is assigned label e1. For instance, x{R12,spouse of,E1,person} = 1 means the label of

relation R12 is spouse of and the label of its first argument, E1, is person. Similarly,

x{Rij ,r,Ej ,e2} = 1 indicates that Rij is assigned label r and its second argument,

Ej , is assigned label e2. With these definitions, the optimization problem can be

represented as the following integer linear program.

min
∑

E∈E

∑

e∈LE

cE(e) · x{E,e} +
∑

R∈R

∑

r∈LR

cR(r) · x{R,r}

+
∑

Ei,Ej∈E

Ei 6=Ej

[

∑

r∈LR

∑

e1∈LE

d1(r, e1) · x{Rij ,r,Ei,e1} +
∑

r∈LR

∑

e2∈LE

d2(r, e2) · x{Rij ,r,Ej ,e2}

]

3. In this chapter, ILP only means integer linear programming, not inductive logic pro-
gramming.
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subject to:
∑

e∈LE

x{E,e} = 1 ∀E ∈ E (1.2)

∑

r∈LR

x{R,r} = 1 ∀R ∈ R (1.3)

x{E,e} =
∑

r∈LR

x{R,r,E,e}

∀E ∈ E , e ∈ LE ,

∀R ∈ {R : E = N 1(R) or E = N 2(R)}
(1.4)

x{R,r} =
∑

e∈LE

x{R,r,E,e} ∀R ∈ R, r ∈ LR, E = N 1(R) (1.5)

x{R,r} =
∑

e∈LE

x{R,r,E,e} ∀R ∈ R, r ∈ LR, E = N 2(R) (1.6)

x{E,e} ∈ {0, 1} ∀E ∈ E , e ∈ LE (1.7)

x{R,r} ∈ {0, 1} ∀R ∈ R, r ∈ LR (1.8)

x{R,r,E,e} ∈ {0, 1} ∀R ∈ R, r ∈ LR, E ∈ E , e ∈ LE (1.9)

Equations (1.2) and (1.3) require that each entity or relation variable can only be

assigned one label. Equations (1.4), (1.5) and (1.6) assure that the assignment to

each entity or relation variable is consistent with the assignment to its neighboring

variables. Equations (1.7), (1.8), and (1.9) are the integral constraints on these

binary variables.

There are several advantages of representing the problem in an LP formulation.

First of all, linear (in)equalities are fairly general and are able to represent many

types of constraints (e.g., the decision time constraint in the experiment in Sec-

tion 1.5). More importantly, an ILP problem at this scale can be solved very quickly

using current numerical packages, such as Xpress-MP [2003] or CPLEX [2003]. We

introduce the general strategies of solving an ILP problem here.

1.4 Solving Integer Linear Programming

To solve an ILP problem, a straightforward idea is to relax the integral constraints.

That is, replacing (1.7), (1.8), and (1.9) with:

x{E,e} ≥ 0 ∀E ∈ E , e ∈ LE (1.10)

x{R,r} ≥ 0 ∀R ∈ R, r ∈ LR (1.11)

x{R,r,E,e} ≥ 0 ∀R ∈ R, r ∈ LR, E ∈ E , e ∈ LE (1.12)

If linear programming relaxation (LPR) returns an integer solution, then it is also

the optimal solution to the ILP problem. In fact, it can be shown that the optimal

solution of a linear program is always integral if the coefficient matrix of its standard

form is unimodular [Schrijver, 1986].
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Definition 1.5

A matrix A of rank m is called unimodular if all the entries of A are integers, and

the determinant of every square submatrix of A of order m is in 0,+1,-1.

Theorem 1.6 Veinott & Dantzig

Let A be an (m,n)-integral matrix with full row rank m. Then the polyhedron

{x|x ≥ 0;Ax = b} is integral for each integral vector b, if and only if A is

unimodular.

Theorem 1.6 indicates that if a linear program is in its standard form, then

regardless of the cost function and the integral vector b, the optimal solution is

an integer point if and only if the coefficient matrix A is unimodular.

When LPR returns a non-integer solution, the ILP problem is usually handled by

one of the two strategies: rounding and search.

The goal of rounding is to find an integer point that is close to the non-integer

solution. Under some conditions of the cost function, which do not hold in our

problem, a well-designed rounding algorithm can be shown that the rounded

solution is a good approximation to the optimal solution [Kleinberg and Tardos,

1999, Chekuri et al., 2001]. Nevertheless, in general, the outcomes of the rounding

procedure may not even be a legitimate solution to the problem.

To find the optimal solution of an ILP problem, a search approach based on the idea

of branch and bound divides an ILP problem into several LP subproblems, and uses

the non-integer solutions returned by an LP solver to reduce the search space. When

LPR finds a non-integer solution, it splits the problem on the non-integer variable.

For example, suppose variable xi is fractional in a non-integer solution to the ILP

problem min{cx : x ∈ S, x ∈ {0, 1}n}, where S is the linear constraints. The ILP

problem can be split into two sub LPR problems, min{cx : x ∈ S ∩ {xi = 0}} and

min{cx : x ∈ S ∩ {xi = 1}}. Since any feasible solution provides an upper bound

and any LPR solution generates a lower bound, the search tree can be effectively

cut.

One technique that is often combined with branch & bound is cutting plane. When

a non-integer solution is given by LPR, it adds a new linear constraint that makes

the non-integer point infeasible, while still keeping the optimal integer solution in

the feasible region. As a result, the feasible region is closer to the ideal polyhedron,

which is the convex hull of feasible integer solutions. The most well-known cutting

plane algorithm is Gomory’s fractional cutting plane method [Wolsey, 1998], for

which it can be shown that only finite number of additional constraints are needed.

Moreover, researchers developed different cutting plane algorithms for different

types of ILP problems. One example is [Wang and Regan, 2000], which only focuses

on binary ILP problems.

In theory, a search-based strategy may need several steps to find the optimal

solution. However, LPR always generates integer solutions for all the (thousands

of) cases we have experimented with, even though the coefficient matrix in our

problem is not unimodular.
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1.5 Experiments

We describe below two sets of experiments on the problem of simultaneously

recognizing entities and relations. In the first, we view the task as a knowledge

acquisition task – we let the system read sentences and identify entities and relations

among them. Given that this is a difficult task which may require quite often

information beyond the sentence, we consider also a “forced decision” task, in which

we simulate a question answering situation – we ask the system, say, “who killed

whom” and evaluate it on identifying correctly the relation and its arguments,

given that it is known that somewhere in this sentence this relation is active. In

addition, this evaluation exhibits the ability of our approach to incorporate task-

specific constraints at decision time. At the end of this section, we will also provide

a case study to illustrate how the inference procedure corrects mistakes both in

entity and relation predictions.

1.5.1 Data Preparation

We annotated the named entities and relations in some sentences from the TREC

documents. In order to effectively observe the interaction between relations and

entities, we chose 1,437 sentences4 that have at least one active relation. Among

those sentences, there are 5,336 entities, and 19,048 pairs of entities (binary rela-

tions). Entity labels include 1,685 persons, 1,968 locations, 978 organizations and

705 other ent. Relation labels include 406 located in, 394 work for, 451 orgBased in,

521 live in, 268 kill, and 17,007 other rel. Note that most pairs of entities have no

active relations at all. Therefore, relation other rel significantly outnumbers others.

Examples of each relation label and the constraints between a relation variable and

its two entity arguments are shown in Table 1.1.

Relation Entity1 Entity2 Example

located in loc loc (New York, US)

work for per org (Bill Gates, Microsoft)

orgBased in org loc (HP, Palo Alto)

live in per loc (Bush, US)

kill per per (Oswald, JFK)

Table 1.1 Relations of interest and the corresponding constraints

4. The data used here is available by following the data link from
http://L2R.cs.uiuc.edu/∼cogcomp/
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1.5.2 Tested Approaches

In order to focus on the evaluation of our inference procedure, we assume the

problem of segmentation (or phrase detection) [Abney, 1991, Punyakanok and Roth,

2001] is solved, and the entity boundaries are given to us as input; thus we only

concentrate on their classifications.

We evaluate our LP based inference procedure by observing its effect in different

approaches of combining the entity and relation classifiers. The first approach is to

train entity and relation classifiers separately. In particular, the relation classifier

does not know the labels of its entity arguments, and the entity classifier does not

know the labels of relations in the sentence, either. For the entity classifier, one

set of features are extracted from words within a size 4 window around the target

phrase. They are: (1) words, part-of-speech tags, and conjunctions of them; (2)

bigrams and trigrams of the mixture of words and tags. In addition, some other

features are extracted from the target phrase, which are listed in Table 1.2.

symbol explanation

icap the first character of a word is capitalized

acap all characters of a word are capitalized

incap some characters of a word are capitalized

suffix the suffix of a word is “ing”, “ment”, etc.

bigram bigram of words in the target phrase

len number of words in the target phrase

place5 the phrase is/has a known place’s name

prof5 the phrase is/has a professional title (e.g., Lt.)

name5 the phrase is/has a known person’s name

Table 1.2 Some features extracted from the target phrase

Pattern Example

arg1 , arg2 San Jose, CA

arg1 , · · · a · · · arg2 prof John Smith, a Starbucks manager · · ·

in/at arg1 in/at/, arg2 Officials in Perugia in Umbria province said · · ·

arg2 prof arg1 CNN reporter David McKinley · · ·

arg1 · · · native of · · · arg2 Elizabeth Dole is a native of Salisbury, N.C.

arg1 · · · based in/at arg2 · · · a manager for K mart based in Troy, Mich. said · · ·

Table 1.3 Some patterns used in relation classification

5. We collected names of famous places, people and popular titles from other data sources
in advance.
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For the relation classifier, there are three sets of features:

1. features similar to those used in the entity classification are extracted from the

two argument entities of the relation;

2. conjunctions of the features from the two arguments;

3. some patterns extracted from the sentence or between the two arguments.

Some features in category 3 are “the number of words between arg1 and arg2 ”,

“whether arg1 and arg2 are the same word”, or “arg1 is the beginning of the

sentence and has words that consist of all capitalized characters”, where arg1 and

arg2 represent the first and second argument entities respectively. Table 1.3 presents

some patterns we use.

The learning algorithm used is a regularized variation of the Winnow update rule

incorporated in SNoW [Roth, 1998, Roth and Yih, 2002, Carlson et al., 1999],

a multi-class classifier that is specifically tailored for large scale learning tasks.

SNoW learns a sparse network of linear functions, in which the targets (entity

classes or relation classes, in this case) are represented as linear functions over a

common feature space. While SNoW can be used as a classifier and predicts using

a winner-take-all mechanism over the activation value of the target classes, we can

also rely directly on the raw activation value it outputs, which is the weighted

linear sum of the active features, to estimate the posteriors. It can be verified

that the resulting values provide a good source of probability estimation. We use

softmax [Bishop, 1995] over the raw activation values as conditional probabilities.

Specifically, suppose the number of classes is n, and the raw activation values of class

i is acti. The posterior estimation for class i is derived by the following equation.

pi =
eacti

∑

1≤j≤n eactj

In addition to the separate approach, we also test several pipeline models, which we

denote E → R, R → E and E ↔ R. The E → R approach first trains the basic entity

classifier (E), which is identical to the entity classifier in the separate approach. Its

predictions on the two entity arguments of a relation are then used conjunctively as

additional features (e.g., person–person or person–location) in learning the relation

classifier (R). Similarly, R → E first trains the relation classifier (R); its output

is then used as additional features in the entity classifier (E). For example, the

additional feature could be “this entity is predicted as the first argument of a

work for relation.” The E ↔ R model is the combination of the above two. It uses

the entity classifier in the R → E model and the relation classifier in the E → R

model as its final classifiers.

Although the true labels of entities and relations are known during training, only

the predicted labels are available during evaluation on new data (and in testing).

Therefore, rather than training the second stage pipeline classifiers on the available

true labels, we train them on the predictions of the previous stage classifiers. This

way, at test time the classifiers are being evaluated on data of the same type they
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were trained on, making the second stage classifier more tolerant to the mistakes 6.

The need to train pipeline classifiers this way has been observed multiple times

in NLP research, and we also have validated it in our experiments. For example,

when the relation classifier is trained using the true entity labels, the performance

is usually worse than when training it using the predicted entity labels.

The last approach, omniscient, tests the conceptual upper bound of this en-

tity/relation classification problem. It also trains the two classifiers separately.

However, it assumes that the entity classifier knows the correct relation labels,

and similarly the relation classifier knows the right entity labels as well. This ad-

ditional information is then used as features in training and testing. Note that this

assumption is unrealistic. Nevertheless, it may give us a hint on how accurate the

classifiers with global inference can achieve. Finally, we apply the LP based inference

procedure to the above five models, and observe how it improves the performance.

1.5.3 Results

We test the aforementioned approaches using 5-fold cross validation. For each

approach, we also perform a paired t-test on its F1 scores before and after inference.

Tables 1.4 and 1.5 show the performance of each approach in recall, precision and

F1.

Approach person location organization

Rec Prec F1 Rec Prec F1 Rec Prec F1

Separate 89.5 89.8 89.4 87.0 91.5 89.0 67.6 91.3 77.0

Separate w/ Inf 90.5 90.6 90.4 88.6 91.8 90.1 71.0 91.2 79.4

E → R 89.5 89.8 89.4 87.0 91.5 89.0 67.6 91.3 77.0

E → R w/ Inf 89.7 90.1 89.7† 87.0 91.7 89.1 69.0 91.2 78.0

R → E 89.1 88.7 88.6 88.1 89.8 88.9 71.4 89.3 78.7

R → E w/ Inf 88.6 88.6 88.3 88.2 89.4 88.7 72.1 88.5 79.0

E ↔ R 89.1 88.7 88.6 88.1 89.8 88.9 71.4 89.3 78.7

E ↔ R w/ Inf 89.5 89.1 89.0 88.7 89.7 89.1 72.0 89.5 79.2

Omniscient 94.9 93.7 94.2 92.4 96.6 94.4 88.1 93.5 90.7

Omniscient w/ Inf 96.1 94.2 95.1‡ 94.0 97.0 95.4 88.7 94.9 91.7

Table 1.4 Results of the entity classification in different approaches. Experiments

are conducted using 5-fold cross validation. Numbers in boldface indicates that the

p-values are smaller than 0.1. Symbols † and ‡ indicate significance at 95% and 99%

levels respectively. Significance tests were computed with a two-tailed paired t-test.

6. In order to derive similar performance in testing, ideally the previous stage classifier
should be trained using a different corpus. We didn’t take this approach because of data
scarcity.
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Approach located in work for orgBased in

Rec Prec F1 Rec Prec F1 Rec Prec F1

Separate 53.0 43.3 45.2 41.9 55.1 46.3 35.6 85.4 50.0

Separate w/ Inf 51.6 56.3 50.5‡ 40.1 74.1 51.2 35.7 90.8 50.8

E → R 56.4 52.5 50.7 44.4 60.8 51.2 42.1 77.8 54.3

E → R w/ Inf 55.7 53.2 50.9 42.9 72.1 53.5† 42.3 78.0 54.5

R → E 53.0 43.3 45.2 41.9 55.1 46.3 35.6 85.4 50.0

R → E w/ Inf 53.0 49.8 49.1† 41.6 67.5 50.4 36.6 87.1 51.2

E ↔ R 56.4 52.5 50.7 44.4 60.8 51.2 42.1 77.8 54.3

E ↔ R w/ Inf 55.7 53.9 51.3 42.3 72.0 53.1 41.6 79.8 54.3

Omniscient 62.9 59.5 57.5 50.3 69.4 58.2 50.3 77.9 60.9

Omniscient w/ Inf 62.9 61.9 59.1 50.3 79.2 61.4† 50.9 81.7 62.5‡

Approach live in kill

Rec Prec F1 Rec Prec F1

Separate 39.7 61.7 48.0 81.5 75.3 77.6

Separate w/ Inf 41.7 68.2 51.4† 80.8 82.7 81.4

E → R 50.0 58.9 53.5 81.5 73.0 76.5

E → R w/ Inf 50.0 57.7 53.0 80.6 77.2 78.3

R → E 39.7 61.7 48.0 81.5 75.3 77.6

R → E w/ Inf 40.6 64.1 49.4 81.5 79.7 80.1

E ↔ R 50.0 58.9 53.5 81.5 73.0 76.5

E ↔ R w/ Inf 49.0 59.1 53.0 81.5 77.5 79.0†

Omniscient 56.1 61.7 58.2 81.4 76.4 77.9

Omniscient w/ Inf 57.3 63.9 59.9 81.4 79.9 79.9

Table 1.5 Results of the relation classification in different approaches. Experi-

ments are conducted using 5-fold cross validation. Numbers in boldface indicates

that that the p-values are smaller than 0.1. Symbols † and ‡ indicate significance at

95% and 99% levels respectively. Significance tests were computed with a two-tailed

paired t-test.

The results show that the inference procedure consistently improves the perfor-

mance of the 5 models, both in entities and relations. One interesting observation

is that the omniscient classifiers, which know the correct entity or relation labels,

can still be improved by the inference procedure. This demonstrates the effective-

ness of incorporating constraints, even when the learning algorithm may be able to

learn them from the data.

One of the more significant results in our experiments, we believe, is the improve-

ment in the quality of the decisions. As mentioned in Section 1.1, incorporating

constraints helps to avoid inconsistency in classification. It is interesting to investi-

gate how often such mistakes happen without global inference, and see how effective

the global inference is.



1.5 Experiments 17

For this purpose, we define the quality of the decision as follows. For a relation

variable and its two corresponding entity variables, if the labels of these variables

are predicted correctly and the relation is active (i.e., not other rel), then we count it

as a coherent prediction. Quality is then the number of coherent predictions divided

by the sum of coherent and incoherent predictions. When the inference procedure

is not applied, 5% to 25% of the predictions are incoherent. Therefore, the quality

is not always good. On the other hand, our global inference procedure takes the

natural constraints into account, so it never generates incoherent predictions. If the

relation classifier has the correct entity labels as features, a good learner should

learn the constraints as well. As a result, the quality of omniscient is almost as

good as omniscient with inference.

Another experiment we performed is the forced decision test, which boosts the F1

score of the “kill” relation to 86.2%. In this experiment, we assume that the system

knows which sentences have the “kill” relation at the decision time, but it does not

know which pair of entities have this relation. We force the system to determine

which of the possible relations in a sentence (i.e., which pair of entities) has this

“kill” relation by adding the following linear inequality.
∑

R∈R

x{R,kill} ≥ 1

This is equivalent to say that at least one of the relation variable in the sentence

should be labeled as “kill”. Since this additional constraint only apply on the

sentences in which the “kill” relation is active, the inference results of other

sentences are not changed. Note that it is a realistic situation (e.g., in the context of

question answering) in that it adds an external constraint, not present at the time

of learning the classifiers and it evaluates the ability of our inference algorithm to

cope with it. The results exhibit that our expectations are correct.

1.5.4 Case Study

Although Tables 1.4 and 1.5 clearly demonstrate that the inference procedure

improves the performance, it is interesting to see how it corrects the mistakes by

examining a specific case. The following sentence is taken from a news article in

our corpus. The eight entities are in boldface, labeled E1 to E8.

At the proposal of the Serb Radical Party|E1
, the Assembly elected political

Branko Vojnic|E2
from Beli Manastir|E3

as its speaker, while Marko

Atlagic|E4
and Dr. Milan Ernjakovic|E5

, Krajina|E6
Serb Democratic

Party|E7
(SDS|E8

) candidates, were elected as deputy speakers.

Table 1.6 shows the probability distribution estimated by the basic classifiers, the

predictions before and after the inference, along with the true labels. Table 1.7

provides this information for the relation variables. Because the values of most of

them are other rel, we only show a small set of them here.
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Label before Inf. after Inf. other person loc. org

E1 Org Org Org 0.21 0.13 0.06 0.60

E2 Per Other Other 0.46 0.16 0.33 0.05

E3 Loc Loc Loc 0.29 0.25 0.31 0.15

E4 Per Other Other 0.37 0.20 0.33 0.10

E5 Per Loc Per 0.10 0.31 0.36 0.23

E6 Loc Loc Loc 0.24 0.05 0.61 0.10

E7 Org Per Org 0.15 0.41 0.03 0.40

E7 Org Org Org 0.35 0.17 0.11 0.37

Table 1.6 Example: Inference effect on entities’ predictions: the true labels, the

predictions before and after inference, and the probabilities estimated by the basic

classifiers.

Label before Inf. after Inf. other rel located in work for org in live in kill

R23 kill other rel other rel 0.66 0.10 0.03 0.03 0.11 0.08

R37 other rel work for other rel 0.38 0.07 0.41 0.02 0.10 0.02

R47 work for other rel other rel 0.65 0.05 0.19 0.02 0.06 0.03

R48 work for other rel other rel 0.83 0.06 0.03 0.02 0.04 0.03

R51 other rel work for work for 0.36 0.06 0.42 0.01 0.13 0.02

R52 other rel work for other rel 0.24 0.15 0.28 0.04 0.22 0.07

R56 other rel work for other rel 0.23 0.16 0.35 0.01 0.22 0.02

R57 work for work for work for 0.26 0.07 0.44 0.01 0.21 0.02

R58 work for other rel other rel 0.58 0.06 0.14 0.02 0.17 0.02

R67 work for other rel other rel 0.67 0.06 0.19 0.02 0.05 0.01

R68 work for other rel other rel 0.76 0.09 0.04 0.04 0.05 0.02

Table 1.7 Example: Inference effect on relations’ predictions: the true labels, the

predictions before and after inference, and the probabilities estimated by the basic

classifiers.

In this example, the inference procedure corrects two variables – E5 (Milan Ern-

jakovic) and E7 (Serb Democratic Party). If we examine the probability distribution

of these two entity variables in Table 1.6, it is easy to see that the classifier has

difficulty deciding whether E5 is a person’s name or location, and whether E7 is

person or organization. The strong belief that there is a work for relation between

these two entities (see the row R57 in Table 1.7) enables the inference procedure

to correct this mistake. In addition, several relation predictions are also corrected

from work for to other rel because they lack the support of the entity classifier.

Note that not every mistake can be rectified, as several work for relations are

misidentified as other rel. This may be due to the fact that the relation other rel

can take any types of entities as its arguments. In some rare cases, the inference

procedure may change a correct prediction to a wrong label. However, since this

seldom happens, the overall performance is still improved after inference.

One interesting thing to notice is the efficiency of this integer linear programming

inference in practice. Using a Pentium III 800MHz machine, it takes less than 30
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seconds to process all the 1,437 sentences (5,336 entity variables and 19,048 relation

variables in total).

1.6 Comparison with Other Inference Methods

In this section, we provide a broader view of inference methods and place the

integer linear programming approach described in this chapter in this context. Our

approach to the problem of learning with structured output decouples learning

and inference stages. As mentioned earlier, this is not the only approach. In other

approaches (e.g., [Tsochantaridis et al., 2004, Taskar et al., 2004]), training can

be done globally, coupled with the inference. Coupling training and inference has

multiple effects on performance and time complexity, which we do not discuss

here (but see [Roth and Yih, 2005, Punyakanok et al., 2005] for some comparative

discussion) as we concentrate on the inference component. Inference is the problem

of determining the best global output ŷ ∈ F(Y) given model parameters λ,

according to some cost function f , where Y is the output space and F(Y) ⊆ Y is

the subset of Y that satisfy some constraints. Formally, if x represents the input

data, then ŷ is decided as follows:

ŷ = argmax
y∈F(Y)

f(x,y;λ).

The efficiency and tractability of the inference procedure dictate the feasibility of

the whole framework. However, whether there exists an efficient and exact inference

algorithm highly depends on the problem’s structure. Polynomial-time algorithms

usually do not exist when there are complex constraints among the output variables

(just like the entity/relation problem described in this chapter). In this section, we

briefly introduce several common inference algorithms in various text processing

problems, and contrast them with our integer linear programming approach.

1.6.1 Exact Polynomial-time Methods

Most polynomial-time inference methods are based on dynamic programming. For

linear chain structures, the Viterbi algorithm and its variations are the most

popular. For tree structures, different cubic-time algorithms have been proposed.

Although replacing these algorithms with the integer linear programming approach

does not necessarily make the inference more efficient in practice, as we show below,

the ILP framework does provide these polynomial-time algorithms an easy way

to incorporate additional “declarative” constraints, which may not be possible to

express within the original inference algorithm. We describe these methods here

and sketch how they can be formulated as an integer linear programming problem.
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1.6.1.1 The Viterbi Algorithm

Linear-chain structures are often used for sequence labeling problems, where the

task is to decide the label of each token. For this problem, hidden Markov mod-

els [Rabiner, 1989], conditional sequential models and other extensions [Punyakanok

and Roth, 2001] and conditional random fields [Lafferty et al., 2001] are commonly

used. While the first two methods learn the state transition between a pair of con-

secutive tokens, conditional random fields relax the directionality assumption and

trains the potential functions for the size-one (i.e., a single token) and size-two (a

pair of consecutive tokens) cliques. In both cases, the Viterbi algorithm is usually

used to find the most probable sequence assignment.

We describe the Viterbi algorithm in the linear-chain conditional random fields

setting as follows. Suppose we need to predict the labels of a sequence of tokens,

t0, t1, · · · , tm−1. Let Y be the set of possible labels for each token, where |Y| = m.

A set of m×m matrices {Mi(x)|i = 0, . . . , n− 1} is defined over each pair of labels

y′, y ∈ Y

Mi(y
′, y|x) = exp(

∑

j

λjfj(y
′, y,x, i)),

where λj are the model parameters and fj are the features. By augmenting two

special nodes y−1 and yn before and after the sequence with labels start and end

respectively, the sequence probability is

p(y|x,λ) =
1

Z(x)

n
∏

i=0

Mi(yi−1, yi|x).

Z(x) is a normalization factor that can be computed from the Mi’s but is not

needed in evaluation. We only need to find the label sequence y that maximizes

the product of the corresponding elements of these n + 1 matrices. The Viterbi

algorithm is the standard method that computes the most likely label sequence

given the observation. It grows the optimal label sequence incrementally by scanning

the matrices from position 0 to n. At step i, it records all the optimal sequences

ending at a label y,∀y ∈ Y (denoted by y∗
i (y)), and also the corresponding product

Pi(y). The recursive function of this dynamic programming algorithm is:

1. P0(y) = M0(start, y|x) and y∗
0(y) = y

2. For 1 ≤ i ≤ n, y∗
i (y) = y∗

i−1(ŷ).(y) and Pi(y) = maxy′∈Y Pi−1(y
′)M(y′, y|x),

where ŷ = argmaxy′∈Y Pi−1(y
′)M(y′, y|x) and “.” is the concatenation operator.

The optimal sequence is therefore y∗
n−1 = [y∗

n]0..n−1, which is the best path to the

end symbol but taking only position 0 to position n − 1.

The solution that Viterbi outputs is in fact the shortest path in the graph con-

structed as follows. Let n be the number of tokens in the sequence, and m be the

number of labels each token can take. The graph consists of nm + 2 nodes and

(n − 1)m2 + 2m edges. In addition to two special nodes start and end that denote
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the start and end positions of the path, the label of each token is represented by a

node vij , where 0 ≤ i ≤ n− 1, and 0 ≤ j ≤ m− 1. If the path passes node vij , then

label j is assigned to token i. For nodes that represent two adjacent tokens v(i−1)j

and vij′ , where 0 ≤ i ≤ n, and 0 ≤ j, j′ ≤ m−1, there is a directed edge xi,jj′ from

v(i−1)j to vij′ , with the cost − log(Mi(jj
′|x)).

Obviously, the path from start to end will pass exactly one node on position i. That

is, exactly one of the nodes vi,j , 0 ≤ j ≤ m−1, will be picked. Figure 1.3 illustrates

the graph. Suppose that y = y0y1 · · · yn−1 is the label sequence determined by the

path. Then:

argmin
y

−
n−1
∑

i=0

log(Mi(yi−1yi|x)) = argmax
y

n−1
∏

i=0

Mi(yi−1yi|x).

Namely, the nodes in the shortest path are exactly the labels returned by the Viterbi

algorithm.

Figure 1.3 The graph that represents the labels of the tokens and the state

transition (also known as the trellis in hidden Markov models)

The Viterbi algorithm can still be used when the matrix is slightly modified to

incorporate simple constraints. For example, in the task of information extraction,

if the label of a word is the beginning of an entity (B), inside an entity (I), or

outside any entity (O), a token label O immediately followed by a label I is not a

valid labeling. The constraint can be incorporated by changing the corresponding

transitional probability or matrix entries to 0 [Chieu and Ng, 2002, Kristjannson

et al., 2004]. However, more general, non-Markovian constraints cannot be resolved

using the same trick.

Recently, Roth and Yih [2005] proposed a different inference approach based on

integer linear programming to replace the Viterbi algorithm. The basic idea there

is to use integer linear programming to find the shortest path in the trellis (e.g.,

Figure 1.3). Each edge of the graph is represented by an indicator variable to

represent whether this edge is in the shortest path or not. The cost function can

be written in terms of a linear function of these indicator variables. In this integer

linear program, linear (in)equalities are added to enforce that the values of these
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indicator variables represent a legitimate path. This integer linear program can be

solved simply by linear programming relaxation because the coefficient matrix is

totally unimodular. However, the main advantage of this new setting is its ability

to allow more general constraints that can be encoded either in linear (in)equalities

or in the cost function. Interested readers may see [Roth and Yih, 2005] for more

details.

1.6.1.2 Constraint Satisfaction with Classifiers

A second efficient inference algorithm for linear sequence tasks that has been used

successfully for natural language and information extraction problems is Constraint

Satisfaction with Classifiers (CSCL) [Punyakanok and Roth, 2001]. This method

was first proposed for shallow parsing – identifying atomic phrases (e.g., base noun

phrases) in a given sentence. In that case, two classifiers are first trained to predict

whether a word opens (O) a phrase or closes (C) a phrase. Since these two classifiers

may generate inconsistent predictions, the inference task has to decide which OC

pairs are indeed the boundaries of a phrase.

We illustrate their approach by the following example. Suppose a sentence has 6

tokens, t1, · · · , t6, as indicated in Figure 1.4. The classifiers have identified 3 opens

and 3 closes in this sentence (i.e., the open and close brackets). Among the OC

pairs (t1, t3), (t1, t5), (t1, t6), (t2, t3), (t2, t5), (t2, t6), (t4, t5), (t4, t6), the inference

procedure needs to decide which of them are the predicted phrases, based on the

cost function. In addition, the chosen phrases should not overlap or embed with

each other. Let the predicate “this pair is selected as a phrase” be represented

by an indicator variable xi ∈ X, where |X| = 8 in this case. They associate a

cost function c : X → R with each variable (where the value c(xi) is determined

as a function of the corresponding OC classifiers), and try to find a solution that

minimizes the overall cost,
∑n

i=1 c(xi)xi.

This problem can be reduced elegantly to a shortest path problem by the following

graph construction. Each open and close word is represented by an O node and a C

node. For each possible OC pair, there is a direct link from the corresponding open

node O to the close node C. Finally, one source (s) node and one target (t) node

are added. Links are added from s to each O and from each C to t. The cost of

an OC link is −pi, where pi is the probability that this OC pair represents a phrase,

estimated by the O and C classifiers.

Because the inference process is also done by finding the shortest path in the graph,

the integer linear programming framework described in [Roth and Yih, 2005] is

applicable here as well.

1.6.1.3 Clause Identification

The two efficient approaches mentioned above can be generalized beyond the

sequential structure, to tree structures. Cubic-time dynamic algorithms are often
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Figure 1.4 Identifying phrases in a sentence using the constraints satisfaction

with classifiers (CSCL) approach (courtesy of Vasin Punyakanok)

used for inference in various tree-structure problems, such as parsing [Johnson,

1998] or clause identification [Tjong Kim Sang and Déjean, 2001]. As an example,

we discuss the inference approach proposed by Carreras et al. [2002], in the context

of clause identification. Clause identification is a partial parsing problem. Given a

sentence, a clause is defined as a sequence of words that contain a subject and a

predicate [Tjong Kim Sang and Déjean, 2001]. In the following example sentence

taken from the Penn Treebank [Marcus et al., 1993], each pair of corresponding

parentheses represents a clause. The task is thus to identify all the clauses in the

sentence.

(The deregulation of railroads and trucking companies (that (began in 1980))

enabled (shippers to bargain for transportation).)

Although the problem looks similar to shallow parsing, the constraints between

the clauses are weaker – clauses may not overlap, but a clause can be embedded

in another. Formally speaking, let wi be the i-th word in a sentence of n words.

A clause can be defined as a pair of numbers (s, t), where 1 ≤ s ≤ t ≤ n, which

represents the word sequence ws, ws+1, . . . , wt. Given two clauses c1 = (s1, t1) and

c2 = (s2, t2), we say that these two clauses overlap iff s1 < s2 ≤ t1 < t2 or

s2 < s1 ≤ t2 < t1.

Similarly to the approach presented throughout this chapter, in [Carreras et al.,

2002, Carreras and Màrquez, 2005], this problem is solved by combining learning

and inference. Briefly speaking, each candidate clause c = (s, t) in the targeted

sentence is associated with a score, score(c), estimated by the classifiers. Let C be

the set of all possible clauses in the given sentence, F(C) all possible subsets of

C that satisfies the non-overlapping constraint. Then the best clause prediction is
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Algorithm 1
generic-search(problem, enqueue-func)

nodes ← MakeQueue(MakeNode(init-state(problem))
while (node is not empty)

node ← RemoveFront(nodes)
if (goal-test(node)) then return node
next ← Operators(node)
nodes ← enqueue-func(problem, nodes, next)

end
return failure

end

Figure 1.5 The generic search algorithm, adapted from [Russell and Norvig, 1995]

defined as:

c∗ = argmax
c∈F(C)

∑

c∈c

score(c)

Carreras et al. [2002] proposed a dynamic programming algorithm to solve

this inference problem. In this algorithm, two 2-dimensional matrices are main-

tained: best-split[s,t] stores the optimal clause predictions in ws, ws+1, . . . , wt;

score[s,t] is the score of the clause (s, t). By filling the table recursively, the

optimal clause prediction can be found in O(n3) time.

As in the previous cases discussed in this section, it is clear that this problem can

be represented as an integer linear program. Each candidate clause (s, t) can be

represented by an indicator variable xs,t. The cost function is the sum of the score

times the corresponding indicator variable, namely
∑

(score(s, t) · xs,t). Suppose

clause candidates (s1, t1) and (s2, t2) overlap. The non-overlapping constraint can

be enforced by adding a linear inequality, xs1,t1 + xs2,t2 ≤ 1.

1.6.2 Generic Methods – Search

As discussed above, exact polynomial time algorithms exist for specific constraint

structures; however, the inference problem typically becomes computationally in-

tractable when additional constraints are introduced, or more complex structures

are needed. A common computational approach to the inference problem in this

case is search. Following the definition in [Russell and Norvig, 1995], search is used

to find a legitimate state transition path from the initial state to a goal state while

trying to minimize the cost. The problem can be treated as consisting of four compo-

nents: state space, operators (the legitimate state transitions), goal-test (a function

that examines whether a goal state is reached), and path-cost-function (the cost

function of the whole path). Figure 1.5 depicts a generic search algorithm.

To solve the entity/relation problem described in this chapter, we can define the

state space as the set of all possible labels of the entities and relations (namely,
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LE and LR), plus “undecided”. In the initial state, the values of all the variables

are “undecided”. A legitimate operator changes an entity or relation variable from

“undecided” to one of the possible labels, subject to the constraints. The goal-test

evaluates whether every variable has been assigned a label, and the path-cost is the

sum of the assignment cost of each variable.

The main advantage of inference using search is its generality. The cost function

need not be linear. The constraints can also be fairly general: as long as the decision

on whether a state violates constraints can be evaluated efficiently, they can be used

to define the operators.

The main disadvantage, however, is that there is no guarantee of optimality. Despite

this weakness, it has been shown that search is a successful approach in some tasks

empirically. For instance, Moore [2005] applied beam search to find the best word

alignment given a linear model learned using voted Perceptron. Recently, Daumé

and Marcu [2005] demonstrated an approximate large margin method for learning

structured output, where the key inference component is search.

In contrast, our integer linear programming approach may or may not be able to re-

place this search mechanism, depending on the specific cost function. Nevertheless,

in several real world problems, we observed that ILP method may not be slower

than search, but is guaranteed to find the optimal solution.

1.7 Conclusion

We presented a linear programming based approach for global inference in cases

where decisions depend on the outcomes of several different but mutually dependent

classifiers. Even in the presence of a fairly general constraint structure, deviating

from the sequential nature typically studied, this approach can find the optimal

solution efficiently.

Contrary to general search schemes (e.g., beam search), which do not guarantee

optimality, the linear programming approach provides an efficient way of finding

the optimal solution. The key advantage of the linear programming formulation is

its generality and flexibility; in particular, it supports the ability to incorporate

classifiers learned in other contexts, “hints” supplied and decision-time constraints,

and reason with all these for the best global prediction. In sharp contrast with the

typically used pipeline framework, our formulation does not blindly trust the results

of some classifiers, and therefore is able to overcome mistakes made by classifiers

with the help of constraints.

Our experiments have demonstrated these advantages by considering the interac-

tion between entity and relation classifiers. In fact, more classifiers can be added

and used within the same framework. For example, if coreference resolution is avail-

able, it is possible to incorporate it in the form of constraints that force the labels of

the co-referred entities to be the same (but, of course, allowing the global solution

to reject the suggestion of these classifiers). Consequently, this may enhance the

performance of entity/relation recognition and, at the same time, correct possible
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coreference resolution errors. Another example is to use chunking information for

better relation identification; suppose, for example, that we have available chunking

information that identifies Subj+Verb and Verb+Object phrases. Given a sentence

that has the verb “murder”, we may conclude that the subject and object of this

verb are in a “kill” relation. Since the chunking information is used in the global in-

ference procedure, this information will contribute to enhancing its performance and

robustness, relying on having more constraints and overcoming possible mistakes

by some of the classifiers. Moreover, in an interactive environment where a user can

supply new constraints (e.g., a question answering situation) this framework is able

to make use of the new information and enhance the performance at decision time,

without retraining the classifiers. As we have shown, our formulation supports not

only improved accuracy, but also improves the ‘coherent” quality of the decisions.

We believe that it has the potential to be a powerful way for supporting natural

language inference.
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