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Chapter 1

Introduction

Learning Based Java is a modeling language for the rapid development of software systems with
one or more learned functions, designed for use with the Java programming language. LBJ offers
a convenient, declarative syntax for classifier and constraint definition directly in terms of the
objects in the programmer’s application. With LBJ, the details of feature extraction, learning,
model evaluation, and inference are all abstracted away from the programmer, leaving him to
reason more directly about his application.

1.1 Motivation

Many software systems are in need of functions that are simple to describe but that no one knows
how to implement. Recently, more and more designers of such systems have turned to machine
learning to plug these gaps. Given data, a discriminative machine learning algorithm yields a
function that classifies instances from some problem domain into one of a set of categories. For
example, given an instance from the domain of email messages (i.e., given an email), we may desire
a function that classifies that email as either ”spam” or ”not spam”. Given data (in particular,
a set of emails for which the correct classification is known), a machine learning algorithm can
provide such a function. We call systems that utilize machine learning technology learning based
programs.

Modern learning based programs often involve several learning components (or, at least a single
learning component applied repeatedly) whose classifications are dependent on each other. There
are many approaches to designing such programs; here, we focus on the following approach. Given
data, the various learning components are trained entirely independently of each other, each opti-
mizing its own loss function. Then, when the learned functions are applied in the wild, the indepen-
dent predictions made by each function are reconciled according to user specified constraints. This
approach has been applied successfully to complicated domains such as Semantic Role Labeling
(Punyakanok, Roth, & Yih, 2008).

1.2 LBJ

Learning Based Java (LBJ) is a modeling language that expedites the development of learning based
programs, designed for use with the JavaTM programming language. The LBJ compiler accepts
the programmer’s classifier and constraint specifications as input, automatically generating efficient
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Java code and applying learning algorithms (i.e., performing training) as necessary to implement
the classifiers’ entire computation from raw data (i.e., text, images, etc.) to output decision (i.e.,
part of speech tag, type of recognized object, etc.). The details of feature extraction, learning,
model evaluation, and inference (i.e., reconciling the predictions in terms of the constraints at
runtime) are abstracted away from the programmer.

Under the LBJ programming philosophy, the designer of a learning based program will first
design an object-oriented internal representation (IR) of the application’s raw data using pure
Java. For example, if we wish to write software dealing with emails, then we may wish to define a
Java class named Email. An LBJ source file then allows the programmer to define classifiers that
take Emails as input. A classifier is merely any method that produces one or more discrete or real
valued classifications when given a single object from the programmer’s IR. It might be hard-coded
using explicit Java code (usually for use as a feature extractor), or learned from data (e.g., labeled
example Emails) using other classifiers as feature extractors.

Feature extraction and learning typically produce several different intermediate representations
of the data they process. The LBJ compiler automates these processes, managing all of their
intermediate representations automatically. An LBJ source file also acts as a Makefile of sorts.
When you make a change to your LBJ source file, LBJ knows which operations need to be repeated.
For example, when you change the code in a hard-coded classifier, only those learned classifiers
that use it as a feature will be retrained. When you change only a learning algorithm parameter,
LBJ skips feature extraction and goes straight to learning.

LBJ is supported by a library of interfaces and classes that implement a standardized func-
tionality for features and classifiers. The library includes learning and inference algorithm im-
plementations, general purpose and domain specific internal representations, and domain specific
parsers.

2



Chapter 2

LBJ Definitions

The terms defined below are used throughout this manual. Their definitions have been carefully
formulated to facilitate the design of a modeling language that uses them as building blocks. They
are intended to disambiguate among the terms’ various usages in the literature, and in doing so they
encapsulate the LBJ programming philosophy. For those experienced with ML and programming
with learning algorithms, the biggest differences from a more typical ML programming philosophy
are:

• The word “classifier” does not imply learning. Näıve Bayes, SVM, Perceptron, etc. are not
classifiers; they are learning algorithms.

• Classifiers (learned and otherwise) should work directly with (internal representations of) raw
data (e.g. text, images, etc.), and they should return values that are directly useful to the
application.

• Any interaction among classifiers’ computations should be completely transparent to the
programmer. In particular, when classifiers’ outputs are constrained with respect to each
other, the classifiers should automatically return values that respect the constraints.

Feature

A feature is a data type which has both a name and a value. There are two types of features in LBJ;
discrete and real. The name of the feature in either case is always a String. A discrete feature
has a value of type String assumed to come from some finite set of unordered values associated
with the feature’s name (although it is not necessary to know what values that set contains ahead
of time). A real feature has a value of type double.

Most learning algorithms use features to index the parameters whose values are determined
during training.1 In the case of real features, the name of the feature alone identifies the corre-
sponding parameter. In the case of discrete features, the corresponding parameter is identified by
the name and value together.2 The only exception to this rule is when a discrete feature is known

1An exception to this rule would be a decision tree learning algorithm, which doesn’t really have parameters, per
se.

2Note again that a decision tree learning algorithm would not need to “split up” the values of a discrete feature so
that they represent separate features in this way. It would simply use a single branching point with many branches.
Anyway, it’s a mute point, since LBJ does not currenlty provide any decision tree learning algorithm implementations.
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to allow only two different values. Such a feature is equivalent to a real feature that can take only
the values 0 and 1; in particular, its name alone identifies the corresponding learned parameter.

Classifier

A classifier is a method that takes exactly one object from the application domain’s internal repre-
sentation as input and produces zero or more features as output. When defining a classifier, LBJ’s
syntax requires the programmer to specify the classifier’s input type, what type of feature(s) are
produced, and whether or not multiple features may be produced. Depending on how the classifier
is declared, the programmer can be given a greater degree of control over the features:

• A classifier may be defined to produce exactly one feature. In this case, the name of the feature
produced is taken to be the name of the classifier, leaving only the value to be computed by
the classifier.

• A classifier may also be defined as a feature generator. In this case, both the names and the
values of the produced features are computed by the classifier. The name of the classifier
will also be stored inside the feature to disambiguate with similar features produced by other
classifiers.

A classifier may be coded explicitly using arbitrary Java, it may be composed from other
classifiers using LBJ’s classifier operators, or it may be learned from data as a function of the
features produced by other classifiers with a special syntax discussed later.

Learner

A learner or learning classifier is a classifier capable of changing its implementation with experience.
The methods used for effecting that change are commonly referred to as the learning algorithm.
In general, the programmer is encouraged to simply call on a learning algorithm implemented in
LBJ’s library, but it is also possible to implement a new learning algorithm in a separate Java
source code and to call it from LBJ source code in the same way.

Examples and Example Objects

An example object is simply an instance from the internal representation of the raw data. It can
be any object whatsoever. Examples are collections of features extracted from a given example
object using classifiers. They are taken as input by a learning algorithm both at training time
and at testing time. Thus, as we will see, every learner starts with an example object, applies a
set of classifiers to that object to create an example, and then sends that example to its learning
algorithm for processing.

An example may or may not come with a label, which is just a feature that indicates the correct
classification of the corresponding example object. Labels are extracted by classifiers, just like any
other feature. The only difference is that a classifier designated as a label extractor will only be
called by a learner during training.
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Parser

A parser is a function that takes raw data as input and instantiates example objects as output.
If a learner is associated with a parser inside an LBJ source code, the LBJ will train that learner
using the example objects produced by the parser at LBJ-compile time. There are several domain
specific parsers defined in the LBJ library, but the programmer will often need to implement his
own in a separate Java source file.

Inference

Inference is the process through which discrete classifications made about objects are reconciled
with global constraints over those classifications. Constraints are written by the programmer using
first order logic and may involve any number of classifiers and objects. LBJ automatically translates
those constraints to linear inequalities for use in an Integer Linear Program at run-time.

Application

The application is the data processing code written in pure Java that works directly with the
(internal representation of) the raw data and has need to classify elements of that data. Because
it calls classifiers defined only in the LBJ source code, it typically cannot be compiled until after
LBJ has compiled the LBJ source file.
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Chapter 3

Tutorial: 20 Newsgroups

We begin our discussion of the LBJ language with a tutorial that illustrates its most common usage.
This tutorial is intended for a first time user of the language. It introduces the syntax for both
single feature and feature generating hard-coded classifiers, as well as the syntax for declaring a
learner. Next, it shows how the learner (or any other classifier) declared in the LBJ source code can
be imported and used in the Java application. Finally, it discusses how to use the LBJ compiler
on the command line to fully compile our learning based program. Throughout the tutorial, we’ll
be using the famous 20 Newsgroups corpus1 as our training data.

3.1 Setting Up

Suppose we want to classify newsgroup posts according to the newsgroup to which each post is best
suited. Such a classifier could be used in a newsgroup client application to automatically suggest
an appropriate destination for a new post. It is plausible that these classifications could be made
as a function of the words that appear in them. For example, the word “motor” is likely to appear
more often in rec.autos or rec.motorcycles than in alt.atheism. However, we do not want to
manually invent these associations one at a time, so we turn to LBJ.

To use LBJ, we first need to decide on an object oriented internal representation. In this case, it
makes sense to define a class named Post that stores the contents of a newsgroup post. Figure 3.1
shows a skeleton for such a class. There, we see that space has been allocated for several fields that
we might expect in a newsgroup post, namely the “From” and “Subject” fields from the header
and the body of the post. We have chosen to represent the body as a two dimensional array; one
dimension for the lines in the body, and the other for the words in each line.

Finally, we have a field called newsgroup. It may seem counterintuitive to include a field to store
this information since it is exactly the classification we aim to compute. LBJ’s supervised learning
algorithms will need this information, however, since it labels the example object. Furthermore,
at test time, our newsgroup client application may fill this field with the newsgroup in which the
post was encountered or in which the user intends to post it, and the learned classifier will simply
ignore it at that point.

We’ll also need to implement a parser that knows how to create Post objects when given the
raw data in a file or files. In LBJ, a parser is any class that implements the LBJ2.parse.Parser

interface. This is a simple interface that requires only three methods be defined. First, the next()

1http://people.csail.mit.edu/jrennie/20Newsgroups
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1. public class Post {
2. private String newsgroup; 〈〈The label of the post.〉〉
3. private String fromHeader;

4. private String subjectHeader;

5. private String[][] body;

6. 〈〈Accessor methods omitted for brevity.〉〉
7. }

Figure 3.1. Class Post represents a newsgroup post.

1. import LBJ2.parse.LineByLine;

2.

3. public class NewsgroupParser extends LineByLine {
4. public NewsgroupParser(String file) { super(file); }
5. public Object next() {
6. String file = readLine();

7. if (file == null) return null; 〈〈No more examples.〉〉
8. return new Post(file);

9. }
10. }

Figure 3.2. Class NewsgroupParser instantiates Post objects and returns them one at a time via the next() method.

method takes no arguments and returns a single example Object (of any type in general, but in
this case, it will be a Post). The LBJ compiler will call this method repeatedly to retrieve training
example objects until it returns null. Next, the reset() method rewinds the parser back to the
beginning of the raw data input it has been reading. Finally, the close() method closes any
streams the parser may have open and frees any other system resources it may be using.

The LBJ library comes with several parsers that read plain text. While it does not include a
parser for newsgroup posts, we can still make use of LBJ2.parse.LineByLine, which will at least
take care of the boilerplate code necessary to read text out of a file. This abstract class also provides
implementations of the reset() and close() methods. The NewsgroupParser class in Figure 3.2
simply extends it to take advantage of that functionality; it won’t be necessary to override reset()

or close(). NewsgroupParser takes as input a file containing the names of other files, assuming
that each of those files represents a single newgroup post. For brevity, we have hidden in Post’s
constructor the code that actually does the work of filling the fields of a Post object.

With Post and NewsgroupParser ready to go, we can now define in the LBJ source code a
hard-coded classifier that identifies which words appear in each post and a learning classifier that
categorizes each post based on those words.
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1. discrete% BagOfWords(Post post) <- {
2. for (int i = 0; i < post.bodySize(); ++i)

3. for (int j = 0; j < post.lineSize(i); ++j) {
4. String word = post.getBodyWord(i, j);

5. if (word.length() > 0 && word.substring(0, 1).matches("[A-Za-z]"))

6. sense word;

7. }
8. }
9.

10. discrete NewsgroupLabel(Post post) <- { return post.getNewsgroup(); }
11.

12. discrete NewsgroupClassifier(Post post) <-

13. learn NewsgroupLabel

14. using BagOfWords

15. from new NewsgroupParser("data/20news.train.shuffled") 40 rounds

16. with SparseNetworkLearner {
17. SparseAveragedPerceptron.Parameters p =

18. new SparseAveragedPerceptron.Parameters();

19. p.learningRate = .1;

20. p.thickness = 3;

21. baseLTU = new SparseAveragedPerceptron(p);

22. }
23. end

Figure 3.3. A simple, learned newsgroup classifier.

3.2 Classifier Declarations

Given the internal representation developed in the previous section, the LBJ code in Figure 3.3
can be used to train a learned newsgroup classifier. It involves a single feature extraction classifier
named BagOfWords, a label classifier named NewsgroupLabel to provide labels during training,
and a multi-class classifier named NewsgroupClassifier that predicts a newsgroup label. It also
assumes that the Post class and the parser NewsgroupParser (or their source files) are available
on the CLASSPATH. To see the code in action, download the source distribution2 from our website
– it includes the data and all the classes mentioned above – and run ./train.sh (assuming that
LBJ is already on your CLASSPATH). We’ll now take a closer look at how it works.

3.2.1 Hard-coded classifiers

An LBJ source file is a list of declarations. The simplest in Figure 3.3 is contained entirely on line
10. It consists of the classifier’s signature and a hard-coded classifier expression separated by a left
arrow indicating assignment. In the classifier’s signature, we see its return type (a single discrete
feature) as well as its input type (an object of type Post). All LBJ classifiers take a single object
(of any type) as input. It is up to the programmer to ensure that all information pertinent to
the classifiers is accessible from that object. The return type, however, is not quite so restrictive.

2http://cogcomp.cs.illinois.edu/software/20news.tgz

9



Returned features may be either discrete or real, and a classifier may return either a single
feature (as on line 10) or multiple features (as indicated on line 1 with the \% symbol). When a
classifier can return multiple features, we call it a feature generator.

On the right hand side of the left arrow is placed a classifier expression. There are many types
of classifier expression, and the two most common are on display in this figure. BagOfWords and
NewsgroupLabel are defined with hard-coded classifier expressions, while NewsgroupClassifier

is defined with a learning classifier expression. When hard-coding the behavior of a classifier,
the programmer has Java 1.4 syntax at his disposal to aid in computing his features’ values, plus
some additional syntactic sugar to make that type of computation easier. For example, the sense

statement on line 6 creates a feature which will eventually be returned, but execution of the method
continues so that multiple features can be “sensed.” Note that only feature generators can use the
sense statement, and only classifiers returning a single feature can use Java’s return statement
(as on line 10).

After everything is said and done, we end up with two hard-coded classifiers. One is a sim-
ple, one feature classifier that merely returns the value of the Post.newsgroup field (via the
getNewsgroup() method, since Post.newsgroup is private). The other loops over all the words in
the post returning each as a separate feature.

3.2.2 Learners

NewsgroupClassifier on line 12 of Figure 3.3 is not specified in the usual, procedural way, but
instead as the output of a learning algorithm applied to data. The verbose learning classifier
expression syntax says that this classifier will learn to mimic an oracle (line 13), using some feature
extraction classifiers (line 14), from some example objects (line 15), with a learning algorithm (lines
16 through 22). The expression ends with the end keyword (line 23). In this case, the oracle is
NewsgroupLabel, the only feature extraction classifier is BagOfWords, the example objects come
from NewsgroupParser, and the learning algorithm is SparseNetworkLearner. We explore each
of these ideas in more detail below.

learn

We say that NewsgroupClassifier is trying to mimic NewsgroupLabel because it will
attempt to return features with the same values and for the same example objects that
NewsgroupLabel would have returned them. Note that the particular feature values being
returned have not been mentioned; they are induced by the learning algorithm from the
data. We need only make sure that the return type of the label classifier is appropriate
for the selected learning algorithm.

using

The argument to the using clause is a single classifier expression. As we can see from this
example code, the name of a classifier qualifies. The only restriction is that this classifier ex-
pression must have an input type that allows it to take instances of NewsgroupClassifier’s
input type. LBJ also provides a comma operator for constructing a feature generator that
simply returns all the features returned by the classifiers on either side of the comma. This
way, we can include as many features as we want simply by listing classifiers separated by
commas.

10



from

The from clause supplies a data source by instantiating a parser. The objects returned
by this parser’s next() method must be instances of NewsgroupClassifier’s input type.
LBJ can then extract features via the using clause and train with the learning algorithm.
This clause also gives the programmer the opportunity to iterate over the training data if
he so desires. The optional rounds clause is part of the from clause, and it specifies how
many times to iterate.

with

The argument to the with clause names a learning algorithm (any class extending
LBJ2.learn.Learner accessible on the CLASSPATH) and allows the programmer to set its
parameters. For example, learningRate (line 19) and thickness (line 20) are parame-
ters of the SparseAveragedPerceptron learning algorithm, while baseLTU (line 21) is a
parameter of the SparseNetworkLearner learning algorithm.

From these elements, the LBJ compiler generates Java source code that performs feature
extraction, applies that code on the example objects to create training examples, and trains our
learner with them. The resulting learner is, in essence, a Java method that takes an example
object as input and returns the predicted newsgroup in a string as output. Note that the code
does not specify the possible newsgroup names or any other particulars about the content of our
example objects. The only reason that this LBJ code results in a newsgroup classifier is because
we give it training data that induces one. If we want a spam detector instead, we need only
change data sources; the LBJ code need not change.3

3.3 Using NewsgroupClassifier in a Java Program

Now that we’ve specified a learned classifier, the next step is to write a pure Java application that
will use it once it’s been trained. This section first introduces the methods every automatically
generated LBJ classifier makes available within pure Java code. These methods comprise a simple
interface for predicting, online learning, and testing with a classifier.

3.3.1 Getting Started

We assume here that all learning will take place during the LBJ compilation phase, which we’ll
discuss in Section 3.4. (It is also possible to learn online, i.e. while the application is running,
which we’ll discuss in Section 3.3.3.) To gain access to the learned classifier within your Java
program, simply instantiate an object of the classifier’s generated class, which has the same name
as the classifier.

NewsgroupClassifier ngClassifier = new NewsgroupClassifier();

The classifier is now ready to make predictions on example objects. NewsgroupClassifier

was defined to take Post objects as input and to make a discrete prediction as output. Thus, if
we have a Post object available, we can retrieve NewsgroupClassifier’s prediction like this:

3Of course, we may want to change the names of our classifiers in that case for clarity’s sake.
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Post post = ...

String prediction = ngClassifier.discreteValue(post);

The prediction made by the classifier will be one of the string labels it observed during
training. And that’s it! The programmer is now free to use the classifier’s predictions however
s/he chooses.

There’s one important technical point to be aware of here. The instance we just created of
class NewsgroupClassifier above does not actually contain the model that LBJ learned for us.
It is merely a ”clone” object that contains internally a reference to the real classifier. Thus, if
our Java application creates instances of this class in different places and performs any operation
that modifies the behavior of the classifier (like online learning), all instances will appear to be
affected by the changes. For simple use cases, this will not be an issue, but see Section 3.3.4 for
details on gaining direct access to the model.

3.3.2 Prediction Confidence

We’ve already seen how to get the prediction from a discrete valued classifier. This technique
will work no matter how the classifier was defined; be it hard-coded, learned, or what have you.
When the classifier is learned, it can go further than merely providing the prediction value it
likes the best. In addition, it can provide a score for every possible prediction it chose amongst,
thereby giving an indication of how confident the classifier is in its prediction. The prediction
with the highest score is the one selected.

Scores are returned by a classifier in a ScoreSet object by calling the score(Object) method,
passing in the same example object that you would have passed to discreteValue(Object).
Once you have a ScoreSet you can get the score for any particular prediction value using the
get(String) method, which returns a double. Alternatively, you can retrieve all scores in an
array and iterate over them, like this:

ScoreSet scores = ngClassifier.scores(post);

Score[] scoresArray = scores.toArray();

for (Score score : scoresArray)

System.out.println("prediction: " + score.value

+ ", score: " + score.score);

Finally, LBJ also lets you define real valued classifiers which return doubles in the Java
application. If you have such a classifier, you can retreive its prediction on an example object
by calling the realValue(Object) method:

double prediction = realClassifier.realValue(someExampleObject);
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3.3.3 Learning

As mentioned above, most classifiers are learned during the LBJ phase of compilation (see
Section 3.4 below). In addition, a classifier generated by the LBJ compiler can also continue
learning from labeled examples in the Java application. Since NewsgroupClassifier takes a
Post object as input, we merely have to get our hands on such an object, stick the label in the
newsgroup field (since that’s where the NewsgroupLabel classifier will look for it), and pass it
to the classifier’s learn(Object) method.

Now that we know how to get our classifier to learn, let’s see how to make it forget.
The contents of a classifier can be completely cleared out by calling the forget() method.
After this method is called, the classifier returns to the state it was in before it observed any
training examples. One reason to forget everything a classifier has learned is to try new learning
algorithm parameters (e.g. learning rates, thresholds, etc.). All LBJ learning algorithms provide
an inner class named Parameters that contains default settings for all their parameters. Simply
instantiate such an object, overwrite the parameters that need to be updated, and call the
setParameters(Parameters) method. For example:

ngClassifier.forget();

SparseAveragedPerceptron.Parameters ltuParameters =

new SparseAveragedPerceptron.Parameters();

ltuParameters.thickness = 12;

NewsgroupClassifier.Parameters parameters =

new NewsgroupClassifier.Parameters();

parameters.baseLTU = new SparseAveragedPerceptron(ltuParameters);

ngClassifier.setParameters(parameters);

This particular example is complicated by the fact that our newsgroup classifier is learned
using SparseNetworkLearner, an algorithm that uses another learning algorithm with its own
parameters as a subroutine. But the technique is the same. At this point, the classifier is
re-initialized with a new thickness setting and is ready for new training examples.

3.3.4 Saving Your Work

If we’ve done any forget()ing and/or learn()ing within our Java application, we’ll probably
be interested in saving what we learned at some point. No problem; simply call the save()

method.

classifier.save();

This operation overwrites the model and lexicon files that were originally generated by the
LBJ compiler. A model file stores the values of the learned parameters (not to be confused
with the manually set learning algorithm parameters mentioned above). A lexicon file stores
the classifier’s feature index, used for quick access to the learnable parameters when training for
multiple rounds. These files are written by the LBJ compiler and by the save() method (though
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only initially; see below) in the same directory where the NewsgroupClassifier.class file is
written.

We may also wish to train several versions of our classifier; perhaps each version will use differ-
ent manually set parameters. But how can we do this if each instance of our NewsgroupClassifier
class is actually a ”clone”, merely pointing to the real classifier object? Easy: just use the
NewsgroupClassifier constructor that takes model and lexicon filenames as input:

NewsgroupClassifier c2 = new NewsgroupClassifier( "myModel.lc", "myLexicon.lex");

This instance of our classifier is not a clone, simply by virtue of our chosen constructor.
It has its own completely independent learnable parameters. Furthermore, if myModel.lc and
myLexicon.lex exist, they will be read from disk into c2. If not, then calling this constructor
creates them. Either way, we can now train our classifier however we choose and then simply
call c2.save() to save everything into those files.

3.4 Compiling Our Learning Based Program with LBJ

Referring once again to this newsgroup classifier’s source distribution4, we first examine our
chosen directory structure starting from the root directory of the distribution.

$ ls

20news.lbj class lbj test.sh

README data src train.sh

$ ls src/dssi/news

NewsgroupParser.java NewsgroupPrediction.java Post.java

We see there is an LBJ source file 20news.lbj in the root directory, and in src/dssi/news

we find plain Java source files implementing our internal representation (Post.java), a parser
that instantiates our internal representation (NewsgroupParser.java), and a program intended
use our trained classifier to make predictions about newsgroups (NewsgroupPrediction.java).
Note that the LBJ source file and all these plain Java source files declare package dssi.news;.
The root directory also contains two directories class and lbj which are initially empty. They
will be used to store all compiled Java class files and all Java source files generated by the LBJ
compiler respectively. Keeping all these files in separate directories is not a requirement, but
many developers find it useful to reduce clutter around the source files they are editing.

4http://cogcomp.cs.illinois.edu/software/20news.tgz
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To compile the LBJ source file using all these directories as intended, we run the following
command:

$ java -Xmx512m -cp $CLASSPATH:class LBJ2.Main \

-sourcepath src \

-gsp lbj \

-d class \

20news.lbj

This command runs the LBJ compiler on 20news.lbj, generating a new Java source file
for each of the classifiers declared therein. Since 20news.lbj mentions both the Post and
NewsgroupParser classes, their definitions (either compiled class files or their original source
files) must be available within a directory structure that mirrors their package names. We
have provided their source files using the -sourcepath src command line flag. The -gsp lbj

(generated source path) flag tells LBJ to put the new Java source files it generates in the lbj

directory, and the -d class flag tells LBJ to put class files in the class directory. For more
information on the LBJ compiler’s command line usage, see Chapter 6.

But the command does more than that; it also trains any learning classifiers on the specified
training data, so that the compiled class files are ready to be used in new Java programs just
like any other class can be. The fact that their implementations came from data is immaterial;
the new Java program that uses these learned classifiers is agnostic to whether the functions it
is calling are learned or hard-coded. Its output will look like this:

Generating code for BagOfWords

Generating code for NewsgroupLabel

Generating code for NewsgroupClassifier

Compiling generated code

Training NewsgroupClassifier

NewsgroupClassifier, pre-extract: 0 examples at Sun Mar 31 10:48...

NewsgroupClassifier, pre-extract: 16828 examples at Sun Mar 31 10:49...

NewsgroupClassifier: Round 1, 0 examples processed at Sun Mar 31 10:49...

NewsgroupClassifier: Round 1, 16828 examples processed at Sun Mar 31 10:49...

NewsgroupClassifier: Round 2, 0 examples processed at Sun Mar 31 10:49...

...

Writing NewsgroupClassifier

Compiling generated code

The compiler tells us which classifiers it is generating code for and which it is training.
Because we have specified progressOutput 20000 in NewsgroupClassifier’s specification (see
the distribution’s 20news.lbj file), we also get messages updating us on the progress being
made during training. We can see here that the first stage of training is a “pre-extraction” stage
in which a feature index is compiled, and all Post objects in our training set are converted to
feature vectors based on the index. Then the classifier is trained over those vectors for 40 rounds.
The entire process should take under 2 minutes on a modern machine.

If you’re curious, you can also look at the files that have been generated:
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$ ls lbj/dssi/news

BagOfWords.java NewsgroupClassifier.java

NewsgroupClassifier.ex NewsgroupLabel.java

$ ls class/dssi/news

BagOfWords.class NewsgroupLabel.class

NewsgroupClassifier$Parameters.class NewsgroupParser.class

NewsgroupClassifier.class Post$1.class

NewsgroupClassifier.lc Post.class

NewsgroupClassifier.lex

The lbj directory now contains a dssi/news subdirectory containing our classifier’s Java
implementations, as well as the pre-extracted feature vectors in the NewsgroupClassifier.ex

file. In the class/dssi/news directory, we find the class files compiled from all our hard-coded
and generated Java source files, as well as NewsgroupClassifier.lc and NewsgroupClassifier.

lex, which contain NewsgroupClassifier’s learned parameters and its feature index (a.k.a.
lexicon) respectively.

Finally, it’s time to compile NewsgroupPrediction.java, the program that calls our learned
classifier to make predictions about new posts.

$ javac -cp $CLASSPATH:class \

-sourcepath src \

-d class \

src/dssi/news/NewsgroupPrediction.java

Notice that the command line flags we gave to the LBJ compiler previously are very similar to
those we give the Java compiler now. We can test out our new program like this:

$ java -Xmx512m -cp $CLASSPATH:class dssi.news.NewsgroupPrediction \

$(head data/20news.test.shuffled)

data/alt.atheism/53531: alt.atheism

data/talk.politics.mideast/76075: talk.politics.mideast

data/sci.med/59050: sci.med

data/rec.sport.baseball/104591: rec.sport.baseball

data/comp.windows.x/67088: comp.windows.x

data/rec.motorcycles/103131: rec.autos

data/sci.crypt/15215: sci.crypt

data/talk.religion.misc/84195: talk.religion.misc

data/sci.electronics/54094: sci.electronics

data/comp.os.ms-windows.misc/10793: comp.os.ms-windows.misc

Post rec.motorcycles/103131 was misclassified as rec.autos, but other than that, things are
going well.
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3.5 Testing a Discrete Classifier

When a learned classifier returns discrete values, LBJ provides the handy TestDiscrete5 class
for measuring the classifier’s prediction performance. This class can be used either as a stand-
alone program or as a library for use inside a Java application. In either case, we’ll need to
provide TestDiscrete with the following three items:

• The classifier whose performance we’re measuring (e.g. NewsgroupClassifier).

• An oracle classifier that knows the true labels (e.g. NewsgroupLabel).

• A parser (i.e., any class implementing the Parser interface) that returns objects of our
classifiers’ input type.

3.5.1 On the Command Line

If we’d like to use TestDiscrete on the command line, the parser must provide a constructor that
takes a single String argument (which could be, e.g., a file name) as input. NewsgroupClassifier

uses the NewsgroupParser parser, which meets this requirement, so we can test our classifier on
the command line like this:

$ java -Xmx512m -cp $CLASSPATH:class LBJ2.classify.TestDiscrete \

dssi.news.NewsgroupClassifier \

dssi.news.NewsgroupLabel \

dssi.news.NewsgroupParser \

data/20news.test

The output of this program is a table of the classifier’s performance statistics broken down
by label. For a given label l, the statistics are based on the quantity of examples with that gold
truth label cl, the quantity of examples predicted to have that label by the classifier c̄l, and the
overlap of these two sets, denoted cl ∧ c̄l (i.e., the quantity of examples correctly predicted to
have that label). Based on these definitions, the table has the following columns:

1. the label l,

2. the classifier’s precision on l, pl = cl∧c̄l
c̄l
× 100%

3. the classifier’s recall on l, rl = cl∧c̄l
cl
× 100%

4. the classifier’s F1 on l, F1(l) = 2 plrl
pl+rl

× 100%

5. the label count cl, and

6. the prediction count c̄l.

At the bottom of the table will always be the overall accuracy of the classifier. For the
NewsgroupClassifier, we get this output:

5http://cogcomp.cs.uiuc.edu/software/doc/LBJ2/library/LBJ2/classify/TestDiscrete.html
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Label Precision Recall F1 LCount PCount

--------------------------------------------------------------

alt.atheism 80.000 80.000 80.000 80 80

comp.graphics 78.814 77.500 78.151 120 118

comp.os.ms-windows.misc 80.198 79.412 79.803 102 101

comp.sys.ibm.pc.hardware 74.074 79.208 76.555 101 108

comp.sys.mac.hardware 80.000 77.551 78.756 98 95

comp.windows.x 82.955 85.882 84.393 85 88

misc.forsale 70.588 80.769 75.336 104 119

rec.autos 77.551 89.063 82.909 128 147

rec.motorcycles 78.571 84.615 81.481 104 112

rec.sport.baseball 81.197 91.346 85.973 104 117

rec.sport.hockey 90.291 90.291 90.291 103 103

sci.crypt 90.816 85.577 88.119 104 98

sci.electronics 77.570 85.567 81.373 97 107

sci.med 83.019 88.000 85.437 100 106

sci.space 91.837 78.947 84.906 114 98

soc.religion.christian 84.946 79.000 81.865 100 93

talk.politics.guns 86.747 72.727 79.121 99 83

talk.politics.mideast 91.262 89.524 90.385 105 103

talk.politics.misc 85.915 76.250 80.795 80 71

talk.religion.misc 86.792 63.889 73.600 72 53

--------------------------------------------------------------

Accuracy 82.150 - - - 2000

The TestDiscrete class also supports the notion of a null label, which is a label intended to
represent the absense of a prediction. The 20 Newsgroups task doesn’t make use of this concept,
but if our task were, e.g., named entity classification in which every phrase is potentially a named
entity, then the classifier will likely output a prediction we interpret as meaning “this phrase is
not a named entity.” In that case, we will also be interested in overall precision, recall, and F1

scores aggregated over the non-null labels. On the TestDiscrete command line, all arguments
after the four we’ve already seen are optional null labels. The output with a single null label
“O” might look like this (note the Overall row at the bottom):

Label Precision Recall F1 LCount PCount

----------------------------------------------

LOC 88.453 87.153 87.798 1837 1810

MISC 83.601 79.067 81.271 922 872

ORG 76.226 76.510 76.368 1341 1346

PER 86.554 88.762 87.644 1842 1889

----------------------------------------------

O 0.000 0.000 0.000 581 606

----------------------------------------------

Overall 84.350 83.995 84.172 5942 5917

Accuracy 76.514 6523
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3.5.2 In a Java Program

Alternatively, we can call TestDiscrete from within our Java application. This comes in handy
if our parser’s constructor isn’t so simple, or when we’d like to do further processing with the
performance numbers themselves. The simplest way to do so is to pass instances of our classifier,
labeler, and parser to TestDiscrete, like this:

NewsgroupLabel oracle = new NewsgroupLabel();

Parser parser = new NewsgroupParser("data/20news.test");

TestDiscrete tester = TestDiscrete.testDiscrete(classifier, oracle, parser);

tester.printPerformance(System.out);

This Java code does exactly the same thing as the command line above. We can also
exert more fine grained control over the computed statistics. Starting from a new instance of
TestDiscrete, we can call reportPrediction(String,String) every time we acquire both a
prediction value and a label. Then we can either call the printPerformance(PrintStream)

method to produce the standard output in table form or any of the methods whose names start
with get to retrieve individual statistics. The example code below retrieves the overall precision,
recall, F1, and accuracy measures in an array.

TestDiscrete tester = new TestDiscrete();

...

tester.reportPrediction(classifier.discreteValue(ngPost),

oracle.discreteValue(ngPost));

...

double[] performance = tester.getOverallStats();

System.out.println("Overall Accuracy: " + performance[3]);
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Chapter 4

The LBJ Language

Now that we have defined the building blocks of classifier computation, we next describe LBJ’s
syntax and semantics for programming with these building blocks.

Like a Java source file, an LBJ source file begins with an optional package declaration and
an optional list of import declarations. Next follow the definitions of classifiers, constraints, and
inferences. Each will be translated by the LBJ compiler into a Java class of the same name. If
the package declaration is present, those Java classes will all become members of that package.
Import declarations perform the same function in an LBJ source file as in a Java source file.

4.1 Classifiers

In LBJ, a classifier can be defined with Java code or composed from the definitions of other
classifiers using special operators. As such, the syntax of classifier specification allows the pro-
grammer to treat classifiers as expressions and assign them to names. This section defines the
syntax of classifier specification more precisely, including the syntax of classifiers learned from
data. It also details the behavior of the LBJ compiler when classifiers are specified in terms of
training data and when changes are made to an LBJ source file.

4.1.1 Classifier Declarations

Classifier declarations are used to name classifier expressions (discussed in Section 4.1.2). The
syntax of a classifier declaration has the following form:

feature-type name (type name )

[cached | cachedin field-access ] <-

classifier-expression

A classifier declaration names a classifier and specifies its input and output types in its header,
which is similar to a Java method header. It ends with a left arrow indicating assignment and a
classifier expression which is assigned to the named classifier.

The optional cached and cachedin keywords are used to indicate that the result of this clas-
sifier’s computation will be cached in association with the input object. The cachedin keyword
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instructs the classifier to cache its output in the specified field of the input object. For example,
if the parameter of the classifier is specified as Word w, then w.partOfSpeech may appear as
the field-access . The cached keyword instructs the classifier to store the output values it
computes in a hash table. As such, the implementations of the hashCode() and equals(Object)

methods in the input type’s class play an important role in the behavior of a cached classifier.
If two input objects return the same value from their hashCode() methods and are equivalent
according to equals(Object), they will receive the same classification from this classifier.1

A cached classifier (using either type of caching) will first check the specified appropriate
location to see if a value has already been computed for the given input object. If it has, it is
simply returned. Otherwise, the classifier computes the value and stores it in the location before
returning it. A discrete classifier will store its value as a String. When caching in a field, it
will assume that null represents the absence of a computed value. A real classifier will store
its value as a double. When caching in a field, it will assume that Double.NaN represents the
absence of a computed value. Array returning classifiers will store a value as an array of the
appropriate type and assume that null represents the absence of a computed value. Generators
may not be cached with either keyword. Last but not least, learning classifiers cached with either
keyword will not load their (potentially large) internal representations from disk until necessary
(i.e., until an object is encountered whose cache location is not filled in). See Section 4.1.2.6 for
more information about learning classifiers.

Semantically, every named classifier is a static method. In an LBJ source file, references to
classifiers are manipulated and passed to other syntactic constructs, similarly to a functional
programming language. The LBJ compiler implements this behavior by storing a classifier’s def-
inition in a static method of a Java class of the same name and providing access to that method
through objects of that class. As we will see, learning classifiers are capable of modifying their
definition, and by the semantics of classifier declarations, these modifications are local to the
currently executing process, but not to any particular object. In other words, when the applica-
tion continues to train a learning classifier on-line, the changes are immediately visible through
every object of the classifier’s class.

Figure 4.1 gives several examples of classifier declarations. These examples illustrate some
key principles LBJ. First, the features produced by a classifier are either discrete or real. If a
feature is discrete, the set of allowable values may optionally be specified, contained in curly
braces. Any literal values including ints, Strings, and booleans may be used in this set2.

Next, every classifier takes exactly one object as input and returns one or more features
as output. The input object will most commonly be an object from the programmer-designed,
object-oriented internal representation of the application domain’s data. When the classifier has
made its classification(s), it returns one or more features representing those decisions. A complete
list of feature return types follows:

1Because this type of classifier caching is implemented with a java.util.WeakHashMap, it is possible for this
statement to be violated if the two objects are not alive in the heap simultaneously. For more information, see the
Java API javadoc.

2Internally, they’ll all be converted to Strings.
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discrete{false, true} highRisk(Patient p) <- {
return p.historyOfCancer() && p.isSmoker();

}

discrete prefix(Word w) cachedin w.prefix <- {
if (w.spelling > 5) return w.spelling.substring(0, 3);

return w.spelling;

}

real[] dimensions(Cube c) <- {
sense c.length;

sense c.width;

sense c.height;

}

discrete bigram(Word w) <- spellingTarget && spellingOneAfter

Figure 4.1. Classifier declarations declaring hard-coded classifiers.

• discrete

• discrete{ value-list }

• real

• discrete[]

• discrete{ value-list }[]

• real[]

• discrete%

• discrete{ value-list }%

• real%

• mixed%

Feature return types ending with square brackets indicate that an array of features is pro-
duced by this classifier. The user can expect the feature at a given index of the array to be the
same feature with a differing value each time the classifier is called on a different input object.
Feature return types ending with a percent sign indicate that this classifier is a feature generator.
A feature generator may return zero or more features in any order when it is called, and there
is no guarantee that the same features will be produced when called on different input objects.
Finally, the mixed% feature return type indicates that the classifier is a generator of both discrete
and real features.
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discrete learnMe(InputObject o) <-

learn labelingClassifier

using c1, c2, c3

from new UserDefinedParser(data)

with new PreDefinedLearner(parameters)

end

Figure 4.2. Learning classifier specification

As illustrated by the fourth classifier in Figure 4.1, a classifier may be composed from other
classifiers with classifier operators. The names spellingTarget and spellingOneAfter here
refer to classifiers that were either defined elsewhere in the same source file or that were im-
ported from some other package. In this case, the classifier bigram will return a discrete feature
whose value is the conjunction of the values of the features produced by spellingTarget and
spellingOneAfter.

All of the classifiers in Figure 4.1 are examples of explicitly coded classifiers. The first three
use Java method bodies to compute the values of the returned features. In each of these cases,
the names of the returned features are known directly from the classifier declaration’s header,
so their values are all that is left to compute. In the first two examples, the header indicates
that a single feature will be returned. Thus, the familiar return statement is used to indicate
the feature’s value. In the third example, the square brackets in the header indicate that this
classifier produces an array of features. Return statements are disallowed in this context since we
must return multiple values. Instead, the sense statement is used whenever the next feature’s
value is computed.

For our final example, we will demonstrate the specification of a learning classifier. The
learnMe learning classifier in Figure 4.2 is supervised by a classifier named labelingClassifier

whose features will be interpreted as labels of an input training object. Next, after the using

clause appears a comma separated list of classifier names. These classifiers perform feature
extraction. The optional from clause designates a parser used to provide training objects to
learnMe at compile-time. Finally, the optional with clause designates a particular learner for
learnMe to utilize.

4.1.2 Classifier Expressions

As was alluded to above, the right hand side of a classifier declaration is actually a single classifier
expression. A classifier expression is one of the following syntactic constructs:

• a classifier name

• a method body (i.e., a list of Java statements in between curly braces)

• a classifier cast expression

• a conjunction of two classifier expressions
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• a comma separated list of classifier expressions

• a learning classifier expression

• an inference invocation expression

We have already explored examples of almost all of these. More precise definitions of each follow.

4.1.2.1 Classifier Names

The name of a classifier defined either externally or in the same source file may appear wherever
a classifier expression is expected. If the named classifier’s declaration is found in the same
source file, it may occur anywhere in that source file (in other words, a classifier need not be
defined before it is used). If the named classifier has an external declaration it must either be
fully qualified (e.g., myPackage.myClassifier) or it must be imported by an import declaration
at the top of the source file. The class file or Java source file containing the implementation
of an imported classifier must exist prior to running the LBJ compiler on the source file that
imports it.

4.1.2.2 Method Bodies

A method body is a list of Java statements enclosed in curly braces explicitly implementing a
classifier. When the classifier implemented by the method body returns a single feature, the
return statement is used to provide that feature’s value. If the feature return type is real,
then the return statement’s expression must evaluate to a double. Otherwise, it can evaluate to
anything - even an object - and the resulting value will be converted to a String. Each method
body takes its argument and feature return type from the header of the classifier declaration it
is contained in (except when in the presence of a classifier cast expression, discussed in Section
4.1.2.3). For more information on method bodies in LBJ, see Section 4.1.3.

4.1.2.3 Classifier Cast Expressions

When the programmer wishes for a classifier sub-expression on the right hand side of a classifier
declaration to be implemented with a feature return type differing from that defined in the
header, a classifier cast expression is the solution. For example, the following classifier declaration
exhibits a learning classifier (see Section 4.1.2.6) with a real valued feature return type. One of
the classifiers it uses as a feature extractor is hard-coded on the fly, but it returns a discrete
feature. A classifier cast expression is employed to achieve the desired affect.

real dummyClassifier(InputObject o) <-

learn labeler

using c1, c2, (discrete) { return o.value == 4; }
end

Of course, we can see that the hard-coded classifier defined on the fly in this example returns
a discrete (boolean) value. Without the cast in front of this method body, the LBJ compiler
would have assumed it to have a real valued feature return type, and an error would have been
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Argument Type Argument Type Result Type

discrete discrete discrete

discrete real real%

discrete discrete[] discrete[]

discrete real[] real%

discrete discrete% discrete%

discrete real% real%

discrete mixed% mixed%

real real real

real discrete[] real%

real real[] real[]

real discrete% real%

real real% real%

real mixed% mixed%

discrete[] discrete[] discrete[]

discrete[] real[] real%

discrete[] discrete% discrete%

discrete[] real% real%

discrete[] mixed% mixed%

real[] real[] real[]

real[] discrete% real%

real[] real% real%

real[] mixed% mixed%

discrete% discrete% discrete%

discrete% real% real%

discrete% mixed% mixed%

real% real% real%

real% mixed% mixed%

mixed% mixed% mixed%

Table 4.1. Conjunction feature return types given particular argument classifier feature return types.

produced.

When a classifier cast expression is applied to a classifier expression that contains other
classifier expressions, the cast propagates down to those classifier expressions recursively as well.

4.1.2.4 Conjunctions

A conjunction is written with the double ampersand operator (&&) in between two classifier
expressions (see Figure 4.1 for an example). The conjunction of two classifiers results in a new
classifier that combines the values of the features returned by its argument classifiers. The nature
of the combination depends on the feature return types of the argument classifiers. Table 4.1
enumerates all possibilities and gives the feature return type of the resulting conjunctive classifier.
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In general, the following rules apply. Two discrete features are combined simply through
concatenation of their values. One discrete and one real feature are combined by creating a new
real valued feature whose name is a function of the discrete feature’s value and whose value is
equal to the real feature’s value. When two real features are combined, their values are multiplied.

The conjunction of two classifiers that return a single feature is a classifier returning a
single feature. When a classifier returning an array is conjuncted with a either a single feature
classifier or a classifier returning an array, the result is an array classifier whose returned array
will contain the combinations of every pairing of features from the two argument classifiers.
Finally, the conjunction of a feature generator with any other classifier will result in a feature
generator producing features representing the combination of every pairing of features from the
two argument classifiers.

4.1.2.5 Composite Generators

“Composite generator” is LBJ terminology for a comma separated list of classifier expressions.
When classifier expressions are listed separated by commas, the result is a feature generator that
simply returns all the features returned by each classifier in the list.

4.1.2.6 Learning Classifier Expressions

Learning classifier expressions have the following syntax:

learn [classifier-expression ] // Labeler

using classifier-expression // Feature extractors

[from instance-creation-expression [int ]] // Parser

[with instance-creation-expression ] // Learning algorithm

[evaluate Java-expression ] // Alternate eval method

[cval [int ] split-strategy ] // K-Fold Cross Validation

[alpha double ] // Confidence Parameter

[testingMetric
instance-creation-expression ]] // Testing Function

[preExtract boolean ] // Feature Pre-Extraction

[progressOutput int ] // Progress Output Frequency

end

The first classifier expression represents a classifier that will provide label features for a super-
vised learning algorithm. It need not appear when the learning algorithm is unsupervised.3 The
classifier expression in the using clause does all the feature extraction on each object, during
both training and evaluation. It will often be a composite generator.

The instance creation expression in the from clause should create an object of a class that
implements the LBJ2.parser.Parser interface in the library (see Section 5.4.1). This clause
is optional. If it appears, the LBJ compiler will automatically perform training on the learner
represented by this learning classifier expression at compile-time. Whether it appears or not, the
programmer may continue training the learner on-line in the application via methods defined in

3Keep in mind, however, that LBJ’s library currently lacks unsupervised learning algorithm implementations.
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LBJ2.learn.Learner in the library (see Section 5.2.1).

When the from clause appears, the LBJ compiler retrieves objects from the specified parser
until it finally returns null. One at a time, the feature extraction classifier is applied to each
object, and the results are sent to the learning algorithm for processing. However, many learn-
ing algorithms perform much better after being given multiple opportunities to learn from each
training object. This is the motivation for the integer addendum to this clause. The integer
specifies a number of rounds, or the number of passes over the training data to be performed by
the classifier during training.

The instance creation expression in the with clause should create an object of a class derived
from the LBJ2.learn.Learner class in the library. This clause is also optional. If it appears, the
generated Java class implementing this learning classifier will be derived from the class named
in the with clause. Otherwise, the default learner for the declared return type of this learning
classifier will be substituted with default parameter settings.

The evaluate clause is used to specify an alternate method for evaluation of the learned
classifier. For example, the SparseNetworkLearner learner is a multi-class learner that, during
evaluation, predicts the label for which it computes the highest score. However, it also provides
the valueOf(Object, java.util.Collection) method which restricts the prediction to one of
the labels in the specified collection. In the application, it’s easy enough to call this method in
place of discreteValue(Object) (discussed in Section 5.1.1), but when this classifier is invoked
elsewhere in an LBJ source file, it translates to an invocation of discreteValue(Object). The
evaluate clause (e.g., evaluate valueOf(o, MyClass.getCollection())) changes the behavior
of discreteValue(Object) (or realValue(Object) as appropriate) so that it uses the specified
Java-expression to produce the prediction. Note that Java-expression will be used only
during the evaluation and not the training of the learner specifying the evaluate clause.

The cval clause enables LBJ’s built-in K-fold cross validation system. K-fold cross validation
is a statistical technique for assessing the performance of a learned classifier by partitioning the
user’s set of training data into K subsets such that a single subset is held aside for testing while
the others are used for training. LBJ automates this process in order to alleviate the need for
the user to perform his own testing methodologies. The optional split-strategy argument to
the cval clause can be used to specify the method with which LBJ will split the data set into
subsets (folds). If the split-strategy argument is not provided, the default value taken is
sequential. The user may choose from the following four split strategies:

• sequential - The sequential split strategy attempts to partition the set of examples
into K equally sized subsets based on the order in which they are returned from the
user’s parser. Given that there are T examples in the data set, the first T/K examples
encountered are considered to be the first subset, while the examples between the (T/K +
1)’th example and the (2T/K)’th example are considered to be the second subset, and so
on.
i.e. [ — 1 — | — 2 — | ... | — K — ]

• kth - The kth split strategy also attempts to partition the set of examples in to K equally
sized subsets with a round-robin style assignement scheme. The x’th example encountered
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is assigned to the (x%K)’th subset.
i.e. [ 1 2 3 4 ... K 1 2 3 4 ... K ... ]

• random - The random split strategy begins with the assignment given by the kth split
strategy, and simply mixes the subset assignments. This ensures that the subsets produced
are as equally sized as possible.

• manual - The user may write their parser so that it returns the unique instance of the
LBJ2.parse.FoldSeparator class (see the separator field) wherever a fold boundary is
desired. Each time this object appears, it represents a partition between two folds. Thus,
if the k-fold cross validation is desired, it should appear k − 1 times. The integer provided
after the cval keyword is ignored and may be omitted in this case.

The testingMetric and alpha clauses are sub-clauses of cval, and, consequently, have no
effect when the cval clause is not present. The testingMetric clause gives the user the op-
portunity to provide a custom testing methodology. The object provided to the testingMetric

clause must implement the LBJ2.learn.TestingMetric interface. If this clause is not provided,
then it will default to the LBJ2.learn.Accuracy metric, which simply returns the ratio of correct
predictions made by the classifier on the testing fold to the total number of examples contained
within said fold.

LBJ’s cross validation system provides a confidence interval according to the measurements
made by the testing function. With the alpha clause, the user may define the width of this
confidence interval. The double-precision argument provided to the alpha clause causes LBJ to
calculate a (1 − a)% confidence interval. For example, “alpha .07” causes LBJ to print a 93%
confidence interval, according to the testing measurements made. If this clause is not provided,
the default value taken is .05, resulting in a 95% confidence interval.

The preExtract clause enables or disables the pre-extraction of features from examples.
When the argument to this clause is true, feature extraction is only performed once, the results
of which are recorded in two files. First, an array of all Feature objects (see Section 5.1.2) ob-
served during training is serialized and written to a file whose name is the same as the learning
classifier’s and whose extension is .lex. This file is referred to as the lexicon. Second, the integer
indexes, as they are found in this array, of all features corresponding to each training object are
written to a file whose name is the same as the learning classifier’s and whose extension is .ex.
This file is referred to as the example file. It is re-read from disk during each training round
during both cross validation and final training, saving time when feature extraction is expensive,
which is often the case.
If this clause is not provided, the default value taken is false.

The progressOutput clause defines how often to produce an output message during training.
The argument to this clause is an integer which represents the number of examples to process
between progress messages. This variable can also be set via a command line parameter using the
-t option. If a value is provided in both places, the one defined here in the Learning Classifier
Expression takes precedence. If no value is provided, then the default value taken is 0, causing
progress messages to be given only at the beginning and end of each training pass.
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When the LBJ compiler finally processes a learning classifier expression, it generates not
only a Java source file implementing the classifier, but also a file containing the results of the
computations done during training. This file will have the same name as the classifier but with
a .lc extension (“lc” stands for “learning classifier”). The directory in which this file and also
the lexicon and example files mentioned earlier are written depends on the appearance of certain
command line parameters discussed in Section 6.2.

4.1.2.7 Inference Invocations

Inference is the process through which classifiers constrained in terms of each other reconcile
their outputs. More information on the specification of constraints and inference procedures can
be found in Sections 4.2 and 4.3 respectively. In LBJ, the application of an inference to a learn-
ing classifier participating in that inference results in a new classifier whose output respects the
inference’s constraints. Inferences are applied to learning classifiers via the inference invocation,
which looks just like a method invocation with a single argument.

For example, assume that LocalChunkType is the name of a discrete learning classifier in-
volved in an inference procedure named ChunkInference. Then a new version of LocalChunkType
that respects the constraints of the inference may be named as follows:

discrete ChunkType(Chunk c) <- ChunkInference(LocalChunkType)

4.1.3 Method Bodies

Depending on the feature return type, the programmer will have differing needs when designing
a method body. If the feature return type is either discrete or real, then only the value of
the single feature is returned through straight forward use of the return statement. Otherwise,
another mechanism will be required to return multiple feature values in the case of an array
return type, or multiple feature names and values in the case of a feature generator. That
mechanism is the sense statement, described in Section 4.1.3.1.

When a classifier’s only purpose is to provide information to a Learner (see Section 5.2.1),
the Feature data type (see Section 5.1.2) is the most appropriate mode of communication.
However, in any LBJ source file, the programmer will inevitably design one or more classifiers
intended to provide information within the programmer’s own code, either in the application or
in other classifier method bodies. In these situations, the features’ values (and not their names)
are the data of interest. Section 4.1.3.2 discusses a special semantics for classifier invocation.

4.1.3.1 The Sense Statement

The sense statement is used to indicate that the name and/or value of a feature has been
detected when computing an array of features or a feature generator. In these contexts, any
number of features may be sensed, and they are returned in the order in which they were sensed.

The syntax of a sense statement in an array returning classifier is simply

sense expression ;
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The expression is interpreted as the value of the next feature sensed. No name need be supplied,
as the feature’s name is simply the concatenation of the classifier’s name with the index this
feature will take in the array. This expression must evaluate to a double if the method body’s
feature return type is real[]. Otherwise, it can evaluate to anything - even an object - and the
resulting value will be converted to a String.

The syntax of a sense statement in a feature generator is

sense expression : expression ;

The first expression may evaluate to anything. Its String value will be appended to the name
of the method body to create the name of the feature. The second expression will be interpreted
as that feature’s value. It must evaluate to a double if the method body’s feature return type
is real%. Otherwise, it can evaluate to anything and the resulting value will be converted to a
String.

The single expression form of the sense statement may also appear in a feature generator
method body. In this case, the expression represents the feature’s name, and that feature is
assumed to be Boolean with a value of true.

4.1.3.2 Invoking Classifiers

Under the right circumstances, any classifier may be invoked inside an LBJ method body just as
if it were a method. The syntax of a classifier invocation is simply name (object ), where object

is the object to be classified and name follows the same rules as when a classifier is named in
a classifier expression (see Section 4.1.2.1). In general, the semantics of such an invocation are
such that the value(s) and not the names of the produced features are returned at the call site.

More specifically:

• A classifier defined to return exactly one feature may be invoked anywhere within a method
body. If it has feature return type discrete, a String will be returned at the call site.
Otherwise, a double will be returned.

• Classifiers defined to return an array of features may also be invoked anywhere within
a method body. Usually, they will return either String[] or double[] at the call site
when the classifier has feature return type discrete[] or real[] respectively. The only
exception to this rule is discussed next.

• When a sense statement appears in a method body defined to return an array of features,
the lone argument to that sense statement may be an invocation of another array returning
classifier of the same feature return type. In this case, all of the features returned by the
invoked classifier are returned by the invoking classifier, renamed to take the invoking
classifier’s name and indexes.

• Feature generators may only be invoked when that invocation is the entire expression on
the right of the colon in a sense statement contained in another feature generator of the
same feature return type4. In this case, this single sense statement will return every

4Any feature generator may be invoked in this context in a classifier whose feature return type is mixed%.
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feature produced by the invoked generator with the following modification. The name of
the containing feature generator and the String value of the expression on the left of
the colon are prepended to every feature’s name. Thus, an entire set of features can be
translated to describe a different context with a single sense statement.

4.1.3.3 Syntax Limitations

When the exact computation is known, LBJ intends to allow the programmer to explicitly
define a classifier using arbitrary Java. However, the current version of LBJ suffers from one
major limitation. All J2SE 1.4.2 statement and expression syntax is accepted, excluding class
and interface definitions. In particular, this means that anonymous classes currently cannot be
defined or instantiated inside an LBJ method body.

4.2 Constraints

Many modern applications involve the repeated application of one or more learning classifiers in
a coordinated decision making process. Often, the nature of this decision making process restricts
the output of each learning classifier on a call by call basis to make all these outputs coherent
with respect to each other. For example, a classification task may involve classifying some set of
objects, at most one of which is allowed to take a given label. If the learned classifier is left to its
own devices, there is no guarantee that this constraint will be respected. Using LBJ’s constraint
and inference syntax, constraints such as these are resolved automatically in a principled manner.

More specifically, Integer Linear Programming (ILP) is applied to resolve the constraints
such that the expected number of correct predictions made by each learning classifier involved is
maximized. The details of how ILP works are beyond the scope of this user’s manual. See
(Punyakanok, Roth, & Yih , 2008) for more details.

This section covers the syntax and semantics of constraint declarations and statements. How-
ever, simply declaring an LBJ constraint has no effect on the classifiers involved. Section 4.3
introduces the syntax and semantics of LBJ inference procedures, which can then be invoked (as
described in Section 4.1.2.7) to produce new classifiers that respect the constraints.

4.2.1 Constraint Statements

LBJ constraints are written as arbitrary first order Boolean logic expressions in terms of learn-
ing classifiers and the objects in a Java application. The LBJ constraint statement syntax is
parameterized by Java expressions, so that general constraints may be expressed in terms of the
objects of an internal representation whose exact shape is not known until run-time. The usual
operators and quantifiers are provided, as well as the atleast and atmost quantifiers, which are
described below. The only two predicates in the constraint syntax are equality and inequality
(meaning string comparison), however their arguments may be arbitrary Java expressions (which
will be converted to strings).

Each declarative constraint statement contains a single constraint expression and ends in a
semicolon. Constraint expressions take one of the following forms:
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• An equality predicate Java-expression :: Java-expression

• An inequality predicate Java-expression !: Java-expression

• A constraint invocation @name (Java-expression )

where the expression must evaluate to an object and name follows similar rules as classi-
fier names when they are invoked. In particular, if MyConstraint is already declared in
SomeOtherPackage, it may be invoked with @SomeOtherPackage.MyConstraint(object).

• The negation of an LBJ constraint !constraint

• The conjunction of two LBJ constraints constraint /\ constraint

• The disjunction of two LBJ constraints constraint \/ constraint

• An implication constraint => constraint

• The equivalence of two LBJ constraints constraint <=> constraint

• A universal quantifier forall (type name in Java-expression ) constraint

where the expression must evaluate to a Java Collection containing objects of the specified
type, and the constraint may be written in terms of name .

• An existential quantifier exists (type name in Java-expression ) constraint

• An “at least” quantifier
atleast Java-expression of (type name in Java-expression ) constraint

where the first expression must evaluate to an an int, and the other parameters play
similar roles to those in the universal quantifier.

• An “at most” quantifier
atmost Java-expression of (type name in Java-expression ) constraint

Above, the operators have been listed in decreasing order of precedence. Note that this can
require parentheses around quantifiers to achieve the desired effect. For example, the conjunction
of two quantifiers can be written like this:

(exists (Word w in sentence) someLearner(w) :: "good")

/\ (exists (Word w in sentence) otherLearner(w) :: "better")

The arguments to the equality and inequality predicates are treated specially. If any of these
arguments is an invocation of a learning classifier, that classifier and the object it classifies
become an inference variable, so that the value produced by the classifier on that object is
subject to change by the inference procedure. The values of all other expressions that appear as
an argument to either type of predicate are constants in the inference procedure. This includes,
in particular, expressions that include a learning classifier invocation as a subexpression. These
learning classifier invocations are not treated as inference variables.
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4.2.2 Constraint Declarations

An LBJ constraint declaration declares a Java method whose purpose is to locate the objects
involved in the inference and generate the constraints. Syntactically, an LBJ constraint declara-
tion starts with a header indicating the name of the constraint and the type of object it takes
as input, similar to a method declaration with a single parameter:

constraint name (type name ) method-body

where method-body may contain arbitrary Java code interspersed with constraint statements all
enclosed in curly braces. When invoked with the @ operator (discussed in Section 4.2.1), the
occurrence of a constraint statement in the body of a constraint declaration signifies not that
the constraint expression will be evaluated in place, but instead that a first order representation
of the constraint expression will be constructed for an inference algorithm to manipulate. The
final result produced by the constraint is the conjunction of all constraint statements encountered
while executing the constraint.

In addition, constraints declared in this way may also be used as Boolean classifiers as if they
had been declared:

discrete{"false", "true"} name (type name )

Thus, a constraint may be invoked as if it were a Java method (i.e., without the @ symbol de-
scribed in Section 4.2.1) anywhere in an LBJ source file, just like a classifier. Such an invocation
will evaluate the constraint in place, rather than constructing its first order representation.

4.3 Inference

The syntax of an LBJ inference has the following form:

inference name head type name

{
[type name method-body ]+ // "Head-finder" methods

[[name ] normalizedby name ;]∗ // How to normalize scores

subjectto method-body // Constraints

with instance-creation-expression // Names the algorithm

}

This structure manages the functions, run-time objects, and constraints involved in an inference.
Its header indicates the name of the inference and its head parameter. The head parameter
(or head object) is an object from which all objects involved in the inference can be reached
at run-time. This object need not have the same type as the input parameter of any learned
function involved in the inference. It also need not have the same type as the input parameter
of any constraint involved in the inference, although it often will.

After the header, curly braces surround the body of the inference. The body contains the
following four elements. First, it contains at least one “head finder” method. Head finder meth-
ods are used to locate the head object given an object involved in the inference. Whenever the
programmer wishes to use the inference to produce the constrained version of a learning classifier
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involved in the inference, that learning classifier’s input type must have a head finder method in
the inference body. Head finder methods are usually very simple. For example:

Word w { return w.getSentence(); }

might be an appropriate head finder method when the head object has type Sentence and one
of the classifiers involved in the inference takes Words as input.

Second, the body specifies how the scores produced by each learning classifier should be
normalized. The LBJ library contains a set of normalizing functions that may be named here. It
is not strictly necessary to use normalization methods, but doing so ensures that the scores com-
puted for each possible prediction may be treated as a probability distribution by the inference
algorithm. Thus, we may then reason about the inference procedure as optimizing the expected
number of correct predictions.

The syntax of normalizer clauses enables the programmer to specify a different normalization
method for each learning classifier involved in the inference. It also allows for the declaration of
a default normalizer to be used by learning classifiers which were not given normalizers individ-
ually. For example:

SomeLearner normalizedby Sigmoid;

normalizedby Softmax;

These normalizer clauses written in any order specify that the SomeLearner learning classifier
should have its scores normalized with the Sigmoid normalization method and that all other
learning classifiers involved in the inference should be normalized by Softmax.

Third, the subjectto clause is actually a constraint declaration (see Section 4.2) whose input
parameter is the head object. For example, let’s say an inference named MyInference is declared
like this:

inference MyInference head Sentence s

and suppose also that several other constraints have been declared named (boringly) Constraint1,
Constraint2, and Constraint3. Then an appropriate subjectto clause for MyInference might
look like this:

subjectto { @Constraint1(s) /\ @Constraint2(s) /\ @Constraint3(s); }

The subjectto clause may also contain arbitrary Java, just like any other constraint declaration.

Finally, the with clause specifies which inference algorithm to use. It functions similarly to
the with clause of a learning classifier expression (see Section 4.1.2.6).

4.4 “Makefile” Behavior

An LBJ source file also functions as a makefile in the following sense. First, code will only be
generated for a classifier definition when it is determined that a change has been made5 in the

5When the file(s) containing the translated code for a given classifier do not exist, this is, of course, also interpreted
as a change having been made.
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LBJ source for that classifier since the last time the compiler was executed. Second, a learning
classifier will only be trained if it is determined that the changes made affect the results of learn-
ing. More precisely, any classifier whose definition has changed lexically is deemed “affected”.
Furthermore, any classifier that makes use of an affected classifier is also affected. This includes
method bodies that invoke affected classifiers and conjunctions and learning classifiers involving
at least one affected classifier. A learning classifier will be trained if and only if a change has been
made to its own source code or it is affected. Thus, when an LBJ source contains many learn-
ing classifiers and a change is made, time will not be wasted re-training those that are unaffected.

In addition, the LBJ compiler will automatically compile any Java source files that it depends
on, so long as the locations of those source files are indicated with the appropriate command
line parameters (see Section 6.2). For example, if the classifiers in an LBJ source file are defined
to take classes from the programmer’s internal representation as input, the LBJ compiler will
automatically compile the Java source files containing those class’ implementations if their class
files don’t already exist or are out of date.
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Chapter 5

The LBJ Library

The LBJ programming framework is supported by a library of interfaces, learning algorithms,
and implementations of the building blocks described in Chapter 4. This chapter gives a general
overview of each of those codes. More detailed usage descriptions can be found in the online
Javadoc at http://flake.cs.uiuc.edu/∼rizzolo/LBJ2/library.

The library is currently organized into five packages. LBJ2.classify contains classes related
to features and classification. LBJ2.learn contains learner implementations and supporting
classes. LBJ2.infer contains inference algorithm implementations and internal representations
for constraints and inference structures. LBJ2.parse contains the Parser interface and some
general purpose internal representation classes. Finally, LBJ2.nlp contains some basic natural
language processing internal representations and parsing routines. In the future, we plan to
expand this library, adding more varieties of learners and domain specific parsers and internal
representations.

5.1 LBJ2.classify

The most important class in LBJ’s library is LBJ2.classify.Classifier. This abstract class
is the interface through which the application accesses the classifiers defined in the LBJ source
file. However, the programmer should, in general, only have need to become familiar with a few
of the methods defined there.

One other class that may be of broad interest is the LBJ2.classify.TestDiscrete class
(discussed in Section 5.1.8), which can automate the performance evaluation of a discrete learning
classifier on a labeled test set. The other classes in this package are designed mainly for internal
use by LBJ’s compiler and can be safely ignored by the casual user. More advanced users who
writes their own learners or inference algorithms in the application, for instance, will need to
become familiar with them.

5.1.1 LBJ2.classify.Classifier

Every classifier declaration in an LBJ source file is translated by the compiler into a Java class
that extends this class. When the programmer wants to call a classifier in the application,
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he creates an object of his classifier’s class using its zero argument constructor and calls an
appropriate method on that object. The appropriate method will most likely be one of the
following four methods:

String discreteValue(Object):
This method will only be overridden in the classifier’s implementation if its feature return
type is discrete. Its return value is the value of the single feature this classifier returns.

double realValue(Object):
This method will only be overridden in the classifier’s implementation if its feature return
type is real. Its return value is the value of the single feature this classifier returns.

String[] discreteValueArray(Object):
This method will only be overridden in the classifier’s implementation if its feature return
type is discrete[]. Its return value contains the values of all the features this classifier
returns.

double[] realValueArray(Object):
This method will only be overridden in the classifier’s implementation if its feature return
type is real[]. Its return value contains the values of all the features this classifier returns.

There is no method similar to the four above for accessing the values of features produced
by a feature generator, since those values are meaningless without their associated names. When
the programmer wants access to the actual features produced by any classifier (not just feature
generators), the following non-static method is used. Note, however, that the main purpose of
this method is for internal use by the compiler.1

FeatureVector classify(Object):
This method is overridden in every classifier implementation generated by the LBJ compiler.
It returns a FeatureVector which may be iterated through to access individual features
(see Section 5.1.3).

Every classifier implementation generated by the compiler overrides the following non-static
member methods as well. They provide type information about the implemented classifier.

String getInputType():
This method returns a String containing the fully qualified name of the class this classifier
expects as input.

String getOutputType():
This method returns a String containing the feature return type of this classifier. If the
classifier is discrete and contains a list of allowable values, it will not appear in the output
of this method.

1One circumstance where the programmer may be interested in this method is to print out the String represen-
tation of the returned FeatureVector.
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String[] allowableValues():
If the classifier is discrete and contains a list of allowable values, that list will be returned
by this method. Otherwise, an array of length zero is returned. Learners that require a
particular number of allowable values may return an array filled with "*" whose length
indicates that number.

Finally, class Classifier provides a simple static method for testing the agreement of two
classifiers. It’s convenient, for instance, when testing the performance of a learned classifier
against an oracle classifier.

double test(Classifier, Classifier, Object[]):
This static method returns the fraction of objects in the third argument that produced the
same classifications from the two argument Classifiers.

There are several other methods of this class described in the Javadoc documentation. They
are omitted here since the programmer is not expected to need them.

5.1.2 LBJ2.classify.Feature

This abstract class is part of the representation of the value produced by a classifier. In particular,
the name of a feature, but not its value, is stored here. Classes derived from this class (described
below) provide storage for the value of the feature. This class exists mainly for internal use by
the LBJ compiler, and most programmers will not need to be familiar with it.

LBJ2.classify.DiscreteFeature:
The value of a feature returned by a discrete classifier is stored as a String in objects
of this class.

LBJ2.classify.DiscreteArrayFeature:
The String value of a feature returned by a discrete[] classifier as well as its integer
index into the array are stored in objects of this class.

LBJ2.classify.RealFeature:
The value of a feature returned by a real classifier is stored as a double in objects of this
class.

LBJ2.classify.RealArrayFeature:
The double value of a feature returned by a real[] classifier as well as its integer index
into the array are stored in objects of this class.

5.1.3 LBJ2.classify.FeatureVector

FeatureVector is a linked-list-style container which stores features that function as labels sep-
arately from other features. It contains methods for iterating through the features and labels and
adding more of either. Its main function is as the return value of the Classifier#classify(Object)

method which is used internally by the LBJ compiler (see Section 5.1.1). Most programmers will
not need to become intimately familiar with this class.
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5.1.4 LBJ2.classify.Score

This class represents the double score produced by a discrete learning classifier is association
with one of its String prediction values. Both items are stored in an object of this class.
This class is used internally by LBJ’s inference infrastructure, which will interpret the score as
an indication of how much the learning classifier prefers the associated prediction value, higher
scores indicating more preference.

5.1.5 LBJ2.classify.ScoreSet

This is another class used internally by LBJ’s inference infrastructure. An object of this class is
intended to contain one Score for each possible prediction value a learning classifier is capable
of returning.

5.1.6 LBJ2.classify.ValueComparer

This simple class derived from Classifier is used to convert a multi-value discrete classifier
into a Boolean classifier that returns true if and only if the multi-valued classifier evaluated
to a particular value. ValueComparer is used internally by SparseNetworkLearner (see Section
5.2.6).

5.1.7 Vector Returners

The classes LBJ2.classify.FeatureVectorReturner and
LBJ2.classify.LabelVectorReturner are used internally by the LBJ compiler to help imple-
ment the training procedure when the programmer specifies multiple training rounds (see Section
4.1.2.6). A feature vector returner is substituted as the learning classifier’s feature extraction
classifier, and a label vector returner is substituted as the learning classifier’s labeler (see Section
5.2.1 to see how this substitution is performed). Each of them then expects the object received as
input by the learning classifier to be a FeatureVector, which is not normally the case. However,
as will be described in Section 5.4.4, the programmer may still be interested in these classes if he
wishes to continue training a learning classifier for additional rounds on the same data without
incurring the costs of performing feature extraction.

5.1.8 LBJ2.classify.TestDiscrete

This class can be quite useful to quickly evaluate the performance of a newly learned classifier
on labeled testing data. It operates either as a stand-alone program or as a class that may be
imported into an application for more tailored use. In either case, it will automatically compute
accuracy, precision, recall, and F1 scores for the learning classifier in question.

To use this class inside an application, simply instantiate an object of it using the no-
argument constructor. Lets call this object tester. Then, each time the learning classifier makes
a prediction p for an object whose true label is l, make the call tester.reportPrediction(p,
l). Once all testing objects have been processed, the printPerformance(java.io.PrintStream)

method may be used print a table of results, or the programmer may make use of the various
other methods provided by this class to retrieve the computed statistics. More detailed usage of
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all these methods as well as the operation of this class as a stand-alone program is available in
the on-line Javadoc.

5.2 LBJ2.learn

The programmer will want to familiarize himself with most of the classes in this package, in
particular those that are derived from the abstract class LBJ2.learn.Learner. These are the
learners that may be selected from within an LBJ source file in association with a learning
classifier expression (see Section 4.1.2.6).

5.2.1 LBJ2.learn.Learner

Learner is an abstract class extending the abstract class Classifier (see Section 5.1.1). It acts
as an interface between learning classifiers defined in an LBJ source file and applications that
make on-line use of their learning capabilities. The class generated by the LBJ compiler when
translating a learning classifier expression will always indirectly extend this class.

In addition to the methods inherited from Classifier, this class defines the following non-
static, learning related methods. These are not the only methods defined in class Learner, and
advanced users may be interested in perusing the Javadoc for descriptions of other methods.

void learn(Object):
The programmer may call this method at any time from within the application to continue
the training process given a single example object. The most common use of this method
will be in conjunction with a supervised learning algorithm, in which case, of course, the
true label of the example object must be accessible by the label classifier specified in
the learning classifier expression in the LBJ source file. Note that changes made via this
method will not persist beyond the current execution of the application unless the save()

method (discussed below) is invoked.

void doneLearning():
Some learning algorithms (usually primarily off-line learning algorithms) save part of their
computation until after all training objects have been observed. This method informs the
learning algorithm that it is time to perform that part of the computation. When compile-
time training is indicated in a learning classifier expression, the LBJ compiler will call
this method after training is complete. Similarly, the programmer who performs on-line
learning in his application may need to call this method as well, depending on the learning
algorithm.

void forget():
The user may call this method from the application to reinitialize the learning classifier to
the state at which it started before any training was performed. Note that changes made
via this method will not persist beyond the current execution of the application unless the
save() method (discussed below) is invoked.

void save():
As described in Section 4.1.1, the changes made while training a classifier on-line in the
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application are immediately visible everywhere in the application. These changes are not
written back to disk unless the save() method is invoked. Once this method is invoked,
changes that have been made from on-line learning will become visible to subsequent
executions of applications that invoke this learning classifier.2

LBJ2.classify.ScoreSet scores(Object):
This method is used internally by inference algorithms which interpret the scores in the
returned ScoreSet (see Section 5.1.5) as indications of which predictions the learning
classifier prefers and how much they are preferred.

LBJ2.classify.Classifier getExtractor():
This method gives access to the feature extraction classifier used by this learning classifier.

void setExtractor(LBJ2.classify.Classifier):
Use this method to change the feature extraction classifier used by this learning classifier.
Note that this change will be remembered during subsequent executions of the application
if the save() method (described above) is later invoked.

LBJ2.classify.Classifier getLabeler():
This method gives access to the classifier used by this learning classifier to produce labels
for supervised learning.

void setLabeler(LBJ2.classify.Classifier):
Use this method to change the labeler used by this learning classifier. Note that this change
will be remembered during subsequent executions of the application if the save() method
(described above) is later invoked.

void write(java.io.PrintStream):
This abstract method must be overridden by each extending learner implementation. A
learning classifier derived from such a learner may then invoke this method to produce
the learner’s internal representation in text form. Invoking this method does not make
modifications to the learner’s internal representation visible to subsequent executions of
applications that invoke this learning classifier like the save() method does.

In addition, the following static flag is declared in every learner output by the LBJ compiler.

public static boolean isTraining:

The isTraining variable can be used by the programmer to determine if his learning
classifier is currently being trained. This ability may be useful if, for instance, a feature
extraction classifier for this learning classifier needs to alter its behavior depending on the
availability of labeled training data. The LBJ compiler will automatically set this flag
true during offline training, and it will be initialized false in any application using the
learning classifier. So, it becomes the programmer’s responsibility to make sure it is set
appropriately if any additional online training is to be performed in the application.

2Please note that the save() method currently will not work when the classifier’s byte code is packed in a jar file.
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5.2.2 LBJ2.learn.LinearThresholdUnit

A linear threshold unit is a supervised, mistake driven learner for binary classification. The pre-
dictions made by such a learner are produced by computing a score for a given example object
and then comparing that score to a predefined threshold. While learning, if the prediction does
not match the label, the linear function that produced the score is updated. Linear threshold
units form the basis of many other learning techniques.

Class LinearThresholdUnit is an abstract class defining a basic API for learners of this type.
A non-abstract class extending it need only provide implementations of the following abstract
methods.

void promote(Object):
This method makes an appropriate modification to the linear function when a mistake
is made on a positive example (i.e., when the computed score mistakenly fell below the
predefined threshold).

void demote(Object):
This method makes an appropriate modification to the linear function when a mistake is
made on a negative example (i.e., when the computed score mistakenly rose above the
predefined threshold).

When a learning classifier expression (see Section 4.1.2.6) employs a learner derived from
this class, the specified label producing classifier must be defined as discrete with a value list
containing exactly two values3. The learner derived from this class will then learn to produce a
higher score when the correct prediction is the second value in the value list.

5.2.3 LBJ2.learn.SparsePerceptron

This learner extends class LinearThresholdUnit (see Section 5.2.2). It represents its linear
function for score computation as a vector of weights corresponding to features. It has an
additive update rule, meaning that it promotes and demotes by treating the collection of features
associated with a training object as a vector and using vector addition. Finally, parameters such
as its learning rate, threshold, the thick separator, and others described in the online Javadoc
can be configured by the user.

5.2.4 LBJ2.learn.SparseAveragedPerceptron

Extended from SparsePerceptron (see Section 5.2.3), this learner computes an approximation of
voted Perceptron by averaging the weight vectors obtained after processing each training example.
Its configurable parameters are the same as those of SparsePerceptron, and, in particular, using
this algorithm in conjunction with a positive thickness for the thick separator can be particularly
effective.

3See Section 4.1.1 for more information on value lists in feature return types.
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5.2.5 LBJ2.learn.SparseWinnow

This learner extends class LinearThresholdUnit (see Section 5.2.2). It represents its linear
function for score computation as a vector of weights corresponding to features. It has a multi-
plicative update rule, meaning that it promotes and demotes by multiplying an individual weight
in the weight vector by a function of the corresponding feature. Finally, parameters such as its
learning rates, threshold, and others described in the online Javadoc can be configured by the
user.

5.2.6 LBJ2.learn.SparseNetworkLearner

SparseNetworkLearner is a multi-class learner, meaning that it can learn to distinguish among
two or more discrete label values when classifying an object. It is not necessary to know which
label values are possible when employing this learner (i.e., it is not necessary for the label pro-
ducing classifier specified in a learning classifier expression to be declared with a value list in its
feature return type). Values that were never observed during training will never be predicted.

This learner creates a new LinearThresholdUnit for each label value it observes and trains
each independently to predict true when its associated label value is the correct classification.
When making a prediction on a new object, it produces the label value corresponding to the
LinearThresholdUnit producing the highest score. The LinearThresholdUnit used may be se-
lected by the programmer, or, if no specific learner is specified, the default is SparsePerceptron.

SparseNetworkLearner is the default discrete learner; if the programmer does not include a
with clause in a learning classifier expression (see Section 4.1.2.6) of discrete feature return type,
this learner is invoked with default parameters.

5.2.7 LBJ2.learn.NaiveBayes

Näıve Bayes is a multi-class learner that uses prediction value counts and feature counts given
a particular prediction value to select the most likely prediction value. It is not mistake driven,
as LinearThresholdUnits are. The scores returned by its scores(Object) method are directly
interpretable as empirical probabilities. It also has a smoothing parameter configurable by the
user for dealing with features that were never encountered during training.

5.2.8 LBJ2.learn.StochasticGradientDescent

Gradient descent is a batch learning algorithm for function approximation in which the learner
tries to follow the gradient of the error function to the solution of minimal error. This imple-
mentation is a stochastic approximation to gradient descent in which the approximated function
is assumed to have linear form.

StochasticGradientDescent is the default real learner; if the programmer does not include
a with clause in a learning classifier expression (see Section 4.1.2.6) of real feature return type,
this learner is invoked with default parameters.
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5.2.9 LBJ2.learn.Normalizer

A normalizer is a method that takes a set of scores as input and modifies those scores so that they
obey particular constraints. Class Normalizer is an abstract class with a single abstract method
normalize(LBJ2.classify.ScoreSet) (see Section 5.1.5) which is implemented by extending
classes to define this “normalization.” For example:

LBJ2.learn.Sigmoid:
This Normalizer simply replaces each score si in the given ScoreSet with 1

1+esi . After
normalization, each score will be greater than 0 and less than 1.

LBJ2.learn.Softmax:
This Normalizer replaces each score with the fraction of its exponential out of the sum
of all scores’ exponentials. More precisely, each score si is replaced by esi∑

j e
sj . After

normalization, each score will be positive and they will sum to 1.

LBJ2.learn.IdentityNormalizer:
This Normalizer simply returns the same scores it was passed as input.

5.2.10 LBJ2.learn.WekaWrapper

The WekaWrapper class is meant to wrap instances of learners from the WEKA library of learning
algorithms4. The LBJ2.learn.WekaWrapper class converts between the internal representations
of LBJ and WEKA on the fly, so that the more extensive set of algorithms contained within
WEKA can be applied to projects written in LBJ.

The WekaWrapper class extends LBJ2.learn.Learner, and carries all of the functionality that
can be expected from a learner. A standard invocation of WekaWrapper could look something
like this:

new WekaWrapper(new weka.classifiers.bayes.NaiveBayes())

Restrictions

• It is crucial to note that WEKA learning algorithms do not learn online. Therefore,
whenever the learn method of the WekaWrapper is called, no learning actually takes place.
Rather, the input object is added to a collection of examples for the algorithm to learn
once the doneLearning() method is called.

• The WekaWrapper only supports features which are either discrete without a value list,
discrete with a value list, or real. In WEKA, these correspond to weka.core.Attribute

objects of type String, Nominal, and Numerical. In particular, array producing classifiers
and feature generators may not be used as features for a learning classifier learned with
this class. See section 4.1.1 for further discussion Classifier Declarations.

• When designing a learning classifier which will use a learning algorithm from WEKA, it
is important to note that very very few algorithms in the WEKA library support String

4http://www.cs.waikato.ac.nz/ml/weka/
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attributes. In LBJ, this means that it will be very hard to find a learning algorithm which
will learn using a discrete feature extractor which does not have a value list. I.e. value
lists should be provided for discrete feature extracting classifiers whenever possible.

• Feature pre-extraction must be enabled in order to use the WekaWrapper class. Feature pre-
extraction is enabled by using the preExtract clause in the LearningClassifierExpression

(discussed in 4.1.2.6).

5.3 LBJ2.infer

The LBJ2.infer package contains many classes. The great majority of these classes form the
internal representation of both propositional and first order constraint expressions and are used
internally by LBJ’s inference infrastructure. Only the programmer who designs his own infer-
ence algorithm in terms of constraints needs to familiarize himself with these classes. Detailed
descriptions of them are provided in the Javadoc.

There are a few classes, however, that are of broader interest. First, the Inference class
is an abstract class from which all inference algorithms implemented for LBJ are derived. It
is described below along with the particular algorithms that have already been implemented.
Finally, the InferenceManager class is used internally by the LBJ library when applications
using inference are running.

5.3.1 LBJ2.infer.Inference

Inference is an abstract class from which all inference algorithms are derived. Executing an
inference generally evaluates all the learning classifiers involved on the objects they have been
applied to in the constraints, as well as picking new values for their predictions so that the
constraints are satisfied. An object of this class keeps track of all the information necessary to
perform inference in addition to the information produced by it. Once that inference has been
performed, constrained classifiers access the results through this class’s interface to determine
what their constrained predictions are. This is done through the valueOf(LBJ2.learn.Learner,

Object) method described below.

String valueOf(LBJ2.learn.Learner, Object):
The arguments to this method are objects representing a learning classifier and an object
involved in the inference. Calling this method causes the inference algorithm to run, if it
has not been run before. This method then returns the new prediction corresponding to
the given learner and object after constraints have been resolved.

5.3.2 LBJ2.infer.GLPK

This inference algorithm, which may be named in the with clause of the LBJ inference syntax,
uses Integer Linear Programming (ILP) to maximize the expected number of correct predictions
while respecting the constraints. Upon receiving the constraints represented as First Order Logic
(FOL) formulas, this implementation first translates those formulas to a propositional represen-
tation. The resulting propositional expression is then translated to a set of linear inequalities by
recursively translating subexpressions into sets of linear inequalities that bound newly created

46



variables to take their place.

The number of linear inequalities and extra variables generated is linear in the depth of
the tree formed by the propositional representation of the constraints. This tree is not binary;
instead, nodes representing operators that are associative and commutative such as conjunction
and disjunction have multiple children and are not allowed to have children representing the same
operator (i.e., when they do, they are collapsed into the parent node). So both the number of
linear inequalities and the number of extra variables created will be relatively low. However, the
performance of any ILP algorithm is very sensitive to both these numbers, since ILP is NP-hard.
On a 3 Ghz machine, the programmer will still do well to keep both these numbers under 20,000
for any given instance of the inference problem.

The resulting ILP problem is then solved by the GNU Linear Programming Kit (GLPK),
a linear programming library written in C.5 This software must be downloaded and installed
separately before installing LBJ, or the GLPK inference algorithm will be disabled. If LBJ has
already been installed, it must be reconfigured and reinstalled (see Chapter 6.1) after installing
GLPK.

5.4 LBJ2.parse

This package contains the very simple Parser interface, implementers of which are used in
conjunction with learning classifier expressions in an LBJ source file when off-line training is
desired (see Section 4.1.2.6). It also contains some general purpose internal representations
which may be of interest to a programmer who has not yet written the internal representations
or parsers for the application.

5.4.1 LBJ2.parse.Parser

The LBJ compiler is capable of automatically training a learning classifier given training data,
so long as that training data comes in the form of objects ready to be passed to the learner’s
learn(Object) method. Any class that implements the Parser interface can be utilized by the
compiler to provide those training objects. This interface simply consists of a single method for
returning another object:

Object next():
This is the only method that an implementing class needs to define. It returns the next
training Object until no more are available, at which point it returns null.

5.4.2 LBJ2.parse.LineByLine

This abstract class extends Parser but does not implement the next() method. It does, however,
define a constructor that opens the file with the specified name and a readLine() method that
fetches the next line of text from that file. Exceptions (as may result from not being able to
open or read from the file) are automatically handled by printing an error message and exiting
the application.

5http://www.gnu.org/software/glpk/
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5.4.3 LBJ2.parse.ChildrenFromVectors

This parser calls a user specified, LinkedVector (see Section 5.4.6) returning Parser internally
and returns the LinkedChildren (see Section 5.4.5) of that vector one at a time through its
next() method. One notable LinkedVector returning Parser is LBJ2.nlp.WordSplitter dis-
cussed in Section 5.5.2.

5.4.4 LBJ2.parse.FeatureVectorParser

This parser is used internally by the LBJ compiler (and may be used by the programmer as well)
to continue training the learning classifier after the first round of training without incurring the
cost of feature extraction. See Section 4.1.2.6 for more information on LBJ’s behavior when the
programmer specifies multiple training rounds. That section describes how lexicon and example
files are produced, and these files become the input to FeatureVectorParser.

The objects produced by FeatureVectorParser will be FeatureVectors, which are not nor-
mally the input to any classifier, including the learning classifier we’d like to continue train-
ing. So, the programmer must first replace the learning classifier’s feature extractor with a
FeatureVectorReturner and its labeler with a LabelVectorReturner (see Section 5.1.7) before
calling learn(Object). After the new training objects have been exhausted, the original feature
extractor and labeler must be restored before finally calling save().

For example, if a learning classifier named MyTagger has been trained for multiple rounds by
the LBJ compiler, the lexicon and example file will be created with the names MyTagger.lex

and MyTagger.ex respectively. Then the following code in an application will continue training
the classifier for an additional round:

MyTagger tagger = new MyTagger();

Classifier extractor = tagger.getExtractor();

tagger.setExtractor(new FeatureVectorReturner());

Classifier labeler = tagger.getLabeler();

tagger.setLabeler(new LabelVectorReturner());

FeatureVectorParser parser =

new FeatureVectorParser("MyTagger.ex", "MyTagger.lex");

for (Object vector = parser.next(); vector != null; vector = parser.next())

tagger.learn(vector);

tagger.setExtractor(extractor);

tagger.setLabeler(labeler);

tagger.save();

5.4.5 LBJ2.parse.LinkedChild

Together with LinkedVector discussed next, these two classes form the basis for a simple, general
purpose internal representation for raw data. LinkedChild is an abstract class containing pointers
to two other LinkedChildren, the “previous” one and the “next” one. It may also store a pointer
to its parent, which is a LinkedVector. Constructors that set up all these links are also provided,
simplifying the implementation of the parser.
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5.4.6 LBJ2.parse.LinkedVector

A LinkedVector contains any number of LinkedChildren and provides random access to them
in addition to the serial access provided by their links. It also provides methods for insertion
and removal of new children. A LinkedVector is itself also a LinkedChild, so that hierarchies
are easy to construct when sub-classing these two classes.

5.5 LBJ2.nlp

The programmer of Natural Language Processing (NLP) applications may find the internal repre-
sentations and parsing algorithms implemented in this package useful. There are representations
of words, sentences, and documents, as well as parsers of some common file formats and algo-
rithms for word and sentence segmentation.

5.5.1 Internal Representations

These classes may be used to represent the elements of a natural language document.

LBJ2.nlp.Word:
This simple representation of a word extends the LinkedChild class (see Section 5.4.5) and
has space for its spelling and part of speech tag.

LBJ2.nlp.Sentence:
Objects of the Sentence class store only the full text of the sentence in a single String.
However, a method is provided to heuristically split that text into Word objects contained
in a LinkedVector.

LBJ2.nlp.NLDocument:
Extended from LinkedVector, this class has a constructor that takes the full text of a
document as input. Using the methods in Sentence and SentenceSplitter, it creates a
hierarchical representation of a natural language document in which Words are contained in
LinkedVectors representing sentences which are contained in this LinkedVector.

LBJ2.nlp.POS:
This class may be used to represent a part of speech, but it used more frequently to simply
retrieve information about the various parts of speech made standard by the Penn Treebank
project (Marcus, Santorini, & Marcinkiewicz , 1994).

5.5.2 Parsers

The classes listed in this section are all derived from class LineByLine (see Section 5.4.2). They
all contain (at least) a constructor that takes a single String representing the name of a file as
input. The objects they return are retrieved through the overridden next() method.

LBJ2.nlp.SentenceSplitter:
Use this Parser to separate sentences out from plain text. The class provides two construc-
tors, one for splitting sentences out of a plain text file, and the other for splitting sentences
out of plain text already stored in memory in a String[]. The user can then retrieve
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Sentences one at a time with the next() method, or all at once with the splitAll()

method. The returned Sentences’ start and end fields represent offsets into the text they
were extracted from. Every character in between those two offsets inclusive, including extra
spaces, newlines, etc., is included in the Sentence as it appeared in the paragraph.6

LBJ2.nlp.WordSplitter:
This parser takes the plain, unannotated Sentences (see Section 5.5.1) returned by another
parser (e.g., SentenceSplitter) and splits them into Word objects. Entire sentences now
represented as LinkedVectors (see Section 5.4.6) are then returned one at a time by calls
to the next() method.

LBJ2.nlp.ColumnFormat:
This parser returns a String[] representing the rows of a file in column format. The input
file is assumed to contain fields of non-whitespace characters separated by any amount of
whitespace, one line of which is commonly used to represent a word in a corpus. This parser
breaks a given line into one String per field, omitting all of the whitespace. A common
usage of this class will be in extending it to create a new Parser that calls super.next()

and creates a more interesting internal representation with the results.

LBJ2.nlp.POSBracketToVector:
Use this parser to return LinkedVector objects representing sentences given file names of
POS bracket form files to parse. These files are expected to have one sentence per line,
and the format of each line is as follows:

(pos1 spelling1) (pos2 spelling2) ... (posn spellingn)

It is also expected that there will be exactly one space between a part of speech and the
corresponding spelling and between a closing parenthesis and an opening parenthesis.

6If the constructor taking a String[] as an argument is used, newline characters are inserted into the returned
sentences to indicate transitions from one element of the array to the next.
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Chapter 6

Installation and Command Line Usage

6.1 Installation

LBJ is written entirely in Java - almost. The Java Native Interface (JNI) is utilized to inter-
face with the GNU Linear Programming Kit (GLPK) which is used to perform inference (see
Section 5.3.2), requiring a small amount of C to complete the connection. This C code must be
compiled as a library so that it can be dynamically linked to the JVM at run-time in any ap-
plication that uses inference. Thus, the GNU Autotools became a natural choice for LBJ’s build
system. More information on building and installing LBJ from its source code is presented below.

On the other hand, some users’ applications may not require LBJ’s automated inference
capabilities. In this case, installation is as easy as downloading two jar files from the Cogni-
tive Computation Group’s website1 and adding them to your CLASSPATH environment variable.
LBJ2.jar contains the classes implementing the LBJ compiler. LBJ2Library.jar contains the
library classes. If this is your chosen method of installation, you may safely skip to the section
on command line usage below.

Alternatively, the source code for both the compiler and the library can be downloaded from
the same web site. Download the file lbj-2.x.x.tar.gz and unpack it with the following com-
mand:

tar zxf lbj-2.x.x.tar.gz

The lbj-2.x.x directory is created, and all files in the package are placed in that directory.
Of particular interest is the file configure. This is a shell script designed to automatically
detect pertinent parameters of your system and to create a set of makefiles that builds LBJ with
respect to those parameters. In particular, this script will detect whether or not you have GLPK
installed. If you do, LBJ will be compiled with inference enabled.2 The configure script itself
was built automatically by the GNU Autotools, but you will not need them installed on your
system to make use of it.

1http://l2r.cs.uiuc.edu/∼cogcomp
2GLPK is a separate software package that must be downloaded, compiled, and installed before LBJ is configured

in order for LBJ to make use of it. Download it from http://www.gnu.org/software/glpk/
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By default, the configure script will create makefiles that intend to install LBJ’s JNI li-
braries and headers in system directories such as /usr/local/lib and /usr/local/include. If
you have root privileges on your system, this will work just fine. Otherwise, it will be nec-
essary to use configure’s --prefix command line option. For example, running configure

with --prefix=$HOME will create makefiles that install LBJ’s libraries and headers in similarly
named subdirectories of your user account’s root directory, such as ~/lib and ~/include. The
configure script has many other options as well. Use --help on the command line for more
information.

If you choose to use the --prefix command line option, then it is a reasonable assumption
that you also used it when building and installing GLPK. In that case, the following environ-
ment variables must be set before running LBJ’s configure script. CPPFLAGS is used to supply
command line parameters to the C preprocessor. We will use it to add the directory where
the GLPK headers were installed to the include path. LDFLAGS is used to supply command
line parameters to the linker. We will use it to add the directory where the GLPK library was
installed to the list of paths that the linker will search in. For example, in the bash shell:

export CPPFLAGS=-I$HOME/include
export LDFLAGS=-L$HOME/lib

or in csh:

setenv CPPFLAGS -I${HOME}/include

setenv LDFLAGS -L${HOME}/lib

The last step in making sure that inference will be enabled is to ensure that the file jni.h

is on the include path for the C preprocessor. This file comes with your JVM distribution. It is
often installed in a standard location already, but if it isn’t, we must set CPPFLAGS in such a way
that it adds all the paths we are interested in to the include path. For example, in the bash shell:

export JVMHOME=/usr/lib/jvm/java-6-sun

export CPPFLAGS="$CPPFLAGS -I$JVMHOME/include"
export CPPFLAGS="$CPPFLAGS -I$JVMHOME/include/linux"

or in csh:

setenv JVMHOME /usr/lib/jvm/java-6-sun

setenv CPPFLAGS "${CPPFLAGS} -I${JVMHOME}/include"

setenv CPPFLAGS "${CPPFLAGS} -I${JVMHOME}/include/linux"

At long last, we are ready to build and install LBJ with the following command:

./configure --prefix=$HOME && make && make install

If all goes well, you will see a message informing you that a library has been installed and that
certain extra steps may be necessary to ensure that this library can be used by other programs.
Follows these instructions. Also, remember to add the lbj-2.x.x directory to your CLASSPATH

environment variable.

LBJ’s makefile also contains rules for creating the jars that are separately downloadable from
the website and for creating the Javadoc documentation for both compiler and library. To create
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the jars, simply type make jars. To create the Javadoc documentation, you must first set the
environment variable LBJ2 DOC equal to the directory in which you would like the documentation
created. Then type make doc.

Finally, users of the VIM editor may be interested in lbj.vim, the LBJ syntax highlighting
file provided in the tar ball. If you have not done so already, create a directory named .vim

in your home directory. In that directory, create a file named filetype.vim containing the
following text:

if exists("did_load_filetypes")

finish

endif

augroup filetypedetect

au! BufRead,BufNewFile *.lbj setf lbj

augroup END

Then create the subdirectory .vim/syntax and place the provided lbj.vim file in that subdirec-
tory. Now, whenever VIM edits a file whose extension is .lbj, LBJ syntax highlighting will be
enabled.
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6.2 Command Line Usage

The LBJ compiler is itself written in Java. It calls javac both to compile classes that its source
file depends on and to compile the code it generates. Its command line usage is as follows:

java LBJ2.Main [options] <source file>

where [options] is zero or more of the following:

-c Compile only: This option tells LBJ2 to translate the given source to
Java, but not to compile the generated Java sources or do any training.

-d <dir> Any class files generated during compilation will be written in the
specified directory, just like javac’s -d command line parameter.

-j <a> Sends the contents of <a> to javac as command line arguments while
compiling. Don’t forget to put quotes around <a> if there is more than
one such argument or if the argument has a parameter.

-t <n> Enables progress output during training of learning classifiers. A
message containing the date and time will be printed to STDOUT after
every <n> training objects have been processed.

-v Prints the version number and exits.

-w Disables the output of warning messages.

-x Clean: This option deletes all files that would have been generated
otherwise. No new code is generated, and no training takes place.

-gsp <dir> LBJ will potentially generate many Java source files. Use this option to
have LBJ write them to the specified directory instead of the current
directory. <dir> must already exist. Note that LBJ will also compile
these files which can result in even more class files than there were
sources. Those class files will also be written in <dir> unless the -d

command line parameter is utilized as well.

-sourcepath <dir> If the LBJ source depends on classes whose source files cannot be found
on the user’s classpath, specify the directories where they can be found
using this parameter. It works just like javac’s -sourcepath command
line parameter.

--parserDebug Debug: This option enables debugging output during parsing.

--lexerOutput Lexer output: With this option enabled, the lexical token stream will be
printed, after which the compiler will terminate.

--parserOutput Parser output: With this option enabled, the parsed abstract syntax
tree will be printed, after which the compiler will quit.

--semanticOutput Semantic analysis output: With this option enabled, some information
computed by semantic analysis will be printed, after which the compiler
will quit.
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By default, all files generated by LBJ will be created in the same directory in which the
LBJ source file is found. To place generated Java sources in a different directory, use the -gsp

(or -generatedsourcepath) command line option. The lexicon and example files described in
Section 4.1.2.6 are also placed in the directory specified by this option. In addition, the generated
sources’ class files will be created in that directory unless the -d command line option is also
specified. This option places all generated class files in the specified directory, just like javac’s
-d option. The “learning classifier” file with extension .lc (also discussed in Section 4.1.2.6)
will also be placed in the directory specified by the -d option. Another option similar to javac

is the -sourcepath option for specifying extra directories in which Java source files are found.
Both the -d and -sourcepath options should be given directly to LBJ if they are given at all.
Do not specify them inside LBJ’s -j option. Finally, LBJ does not offer a -classpath option.
Simply give this parameter to the JVM instead.

For example, say an employee of the XYZ company is building a new software package called
ABC with the help of LBJ. This is a large project, and compiling the LBJ source file will gen-
erate many new Java sources. She places her LBJ source file in a new working directory along
side three new subdirectories: src, class, and lbj.

$ ls

abc.lbj src/ class/ lbj/

Next, since all the source files in the ABC application will be part of the com.xyz.abc package,
she creates the directory structure com/xyz/abc as a subdirectory of the src directory. Applica-
tion source files are then placed in the src/com/xyz/abc directory. Next, at the top of her LBJ
source file she writes the line package com.xyz.abc;. Now she is ready to run the following
commands:

$ java -cp $CLASSPATH:class LBJ2.Main -sourcepath src -gsp lbj -d class abc.lbj

. . .

$ javac -classpath $CLASSPATH:class -sourcepath lbj:src -d class \

src/com/xyz/abc/*.java

$ jar cvf abc.jar -C class com

The first command creates the com/xyz/abc directory structure in both of the lbj and class

directories. LBJ then generates new Java sources in the lbj/com/xyz/abc directory and class
files in the class/com/xyz/abc directory. Now that the necessary classifiers’ implementations
exist, the second command compiles the rest of the application. Finally, the last command pre-
pares a jar file containing the entire ABC application. Users of ABC need only add abc.jar to
their CLASSPATH.

There are two other JVM command line parameters that will be of particular interest to
programmers working with large datasets. Both increase the amount of memory that Java is
willing to utilize while running. The first is -Xmx<size> which sets the maximum Java heap size.
It should be set as high as possible, but not so high that it causes page-faults for the JVM or
for some other application on the same computer. This value must be a multiple of 1024 greater
than 2MB and can be specified in kilobytes (K, k), megabytes (M, m), or gigabytes (G, g).

The second is -XX:MaxPermSize=<size> which sets the maximum size of the permanent gen-
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eration. This is a special area of the heap which stores, among other things, canonical representa-
tions for the Strings in a Java application. Since a learned classifier can contain many Strings, it
may be necessary to set it higher than the default of 64 MB. For more information about the heap
and garbage collection, see http://java.sun.com/docs/hotspot/gc5.0/gc tuning 5.html.

With these two command line parameters, a typical LBJ compiler command line might look
like:

java -Xmx512m -XX:MaxPermSize=512m LBJ2.Main Test.lbj

When it is necessary to run the compiler with these JVM settings, it will also be necessary to
run the application that uses the generated classifiers with the same or larger settings.
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Chapter 7

Licenses and Copyrights

The LBJ compiler and library are covered by the University of Illinois Open Source License.
The LBJ compiler contains code generated by the JLex automatic scanner generator and the
Java CUP automatic parser generator, and it is packaged with run-time classes from the CUP
distribution.

7.1 LBJ’s License

Illinois Open Source License
University of Illinois/NCSA
Open Source License

Copyright © 2007, Nicholas D. Rizzolo and Dan Roth. All rights reserved.

Developed by:
The Cognitive Computations Group
Department of Computer Science
University of Illinois at Urbana-Champaign
http://l2r.cs.uiuc.edu/∼cogcomp

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ”Software”), to deal with the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimers.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimers in the documentation and/or other materials provided
with the distribution.
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• Neither the names of the Cognitive Computations Group, nor the University of Illinois at
Urbana-Champaign, nor the names of its contributors may be used to endorse or promote
products derived from this Software without specific prior written permission.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

7.2 JLex’s License

Copyright 1996-2003 by Elliot Joel Berk and C. Scott Ananian

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear in
all copies and that both the copyright notice and this permission notice and warranty disclaimer
appear in supporting documentation, and that the name of the authors or their employers not
be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

The authors and their employers disclaim all warranties with regard to this software, including
all implied warranties of merchantability and fitness. In no event shall the authors or their
employers be liable for any special, indirect or consequential damages or any damages whatso-
ever resulting from loss of use, data or profits, whether in an action of contract, negligence or
other tortious action, arising out of or in connection with the use or performance of this software.

This is an open source license. It is also GPL-Compatible (see entry for ”Standard ML of New
Jersey”). The portions of JLex output which are hard-coded into the JLex source code are
(naturally) covered by this same license.

Java is a trademark of Sun Microsystems, Inc. References to the Java programming language in
relation to JLex are not meant to imply that Sun endorses this product.

7.3 CUP’s License

CUP Parser Generator Copyright Notice, License, and Disclaimer
Copyright 1996-1999 by Scott Hudson, Frank Flannery, C. Scott Ananian

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear in
all copies and that both the copyright notice and this permission notice and warranty disclaimer
appear in supporting documentation, and that the names of the authors or their employers not
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be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

The authors and their employers disclaim all warranties with regard to this software, including
all implied warranties of merchantability and fitness. In no event shall the authors or their
employers be liable for any special, indirect or consequential damages or any damages whatso-
ever resulting from loss of use, data or profits, whether in an action of contract, negligence or
other tortious action, arising out of or in connection with the use or performance of this software.

This is an open source license. It is also GPL-Compatible (see entry for ”Standard ML of New
Jersey”). The portions of CUP output which are hard-coded into the CUP source code are (nat-
urally) covered by this same license, as is the CUP runtime code linked with the generated parser.

Java is a trademark of Sun Microsystems, Inc. References to the Java programming language in
relation to CUP are not meant to imply that Sun endorses this product.
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