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Comprehension 

1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
3. Christopher Robin’s dad was a magician.     4. Christopher Robin must be at least 65 now.  

A process that maintains and 
updates a collection of propositions 
about the state of affairs.  

This is an Inference Problem 

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 



Connecting Language to the World 

 How to recover meaning from text? 
 Annotate with meaning representation; use (standard) “example based” ML 

 Teacher needs deep understanding of the learning agent  
 Annotation burden; not scalable. 

 Instructable computing 
 Natural communication between teacher/agent  
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Connecting Language to the World 

Can I get a coffee with sugar 
and no milk 

MAKE(COFFEE,SUGAR=YES,MILK=NO) 

Arggg 

Great! 

Semantic Parser 

Can we rely on this interaction to 
provide supervision (and,  
eventually, recover meaning) ? 



Scenarios I: Understanding Instructions [IJCAI’11]  

 Understanding Games’ Instructions  
 
 
 
 

 Allow a teacher to interact with an automated learner using 
natural instructions 
 Agonstic to agent's internal representations 
 Contrasts with traditional 'example-based' ML 
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A top card can be moved to the tableau if it 
has a different color than the color of the 

top tableau card, and the cards have 
successive values.   



What to Learn from Natural Instructions? 

 Two conceptual ways to think about learning from instructions 
 

 (i) Learn directly to play the game [EMNLP’09;  Barziley et. al 10,11] 
 Consults the natural language instructions  
 Use them as a way to improve your feature based representation 

 (ii) Learn to interpret a natural language lesson [IJCAI’11] 
 And (jointly) how to use this interpretation to do well on the final task. 
 Will this help generalizing to other games? 

 Semantic Parsing into some logical representation is a 
necessary intermediate step 
 Learn how to semantically parse from task level feedback 
 Evaluate at the task level rather than the representation level 
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Scenario I’: Semantic Parsing  [CoNLL’10,ACL’11…] 

    
 
 

 

 Successful interpretation involves multiple decisions 
What entities appear in the interpretation? 
 “New York” refers to a state or a city? 
 
 How to compose fragments together?  

 state(next_to()) >< next_to(state()) 

 Question: How to learn to semantically parse from “task 
level” feedback.  
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X :“What is the largest state that borders New York and Maryland ?" 

 Y: largest( state( next_to( state(NY)) AND next_to (state(MD)))) 



Scenario II. The language-world mapping problem 
[Connors, Fisher, Roth: IJCAI’11, ACL’10,…] 
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“the language” 

“the world” 

[Topid rivvo den marplox.] 

 How do we acquire language? 
 
 
 
 
 
 

 
 

 Is it possible to learn the meaning of verbs from natural, behavior 
level, feedback?  (no “intermediate representation” level feedback) 

In all cases: There is an important intermediate 
representation between the input and the task level. 
We are interested in learning to do well on the task, 
without getting any feedback in the intermediate level.  



Outline 
 Background: NL Structure with Integer Linear Programming  

 Global Inference with expressive structural constraints in NLP 
 

 Constraints Driven Learning with Indirect Supervision  
 

 Training Paradigms for latent structure  
 Indirect Supervision Training with latent structure (NAACL’10) 
 Training Structure Predictors by Inventing binary labels (ICML’10) 

 
 Response based Learning 

 Driving supervision signal from World’s Response (CoNLL’10,IJCAI’11) 
 Semantic Parsing ; Playing Freecell; Language Acquisition 
 Some work in progress 
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Interpret Language Into An Executable Representation 

    
 
 

 
 Successful interpretation involves multiple decisions 

 What entities appear in the interpretation? 
 “New York” refers to a state or a city? 
 
 How to compose fragments together?  

 state(next_to()) >< next_to(state()) 

 
 Question: How to learn to semantically parse from “task 

level” feedback.  
 

Page 9 

X :“What is the largest state that borders New York and Maryland ?" 

Y: largest( state( next_to( state(NY) AND next_to (state(MD)))) 



Learning and Inference in NLP 

 Natural Language Decisions are Structured  
 Global decisions in which several local decisions play a role  but there 

are mutual dependencies on their outcome. 
 

 It is essential to make coherent decisions in a way that takes 
the interdependencies into account. Joint, Global Inference. 
 

 But: Learning structured models requires annotating structures. 
 

 Interdependencies among decision variables should be 
exploited in Decision Making (Inference) and in Learning.  
 Goal: learn from minimal, indirect supervision 
 Amplify it using interdependencies among variables 
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Constrained Conditional Models (aka ILP Inference) 

How to solve? 

This is an Integer Linear Program 

Solving using ILP packages gives an  
exact solution.  

Cutting Planes, Dual Decomposition & 
other search techniques are possible  

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

How to train? 

Training is learning the objective 
function 

Decouple? Decompose? 

How to exploit the structure to        
minimize supervision? 
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CCMs can be viewed as a general interface to easily combine 
declarative domain knowledge with data driven statistical models 



Three Ideas 
 Idea 1:  
     Separate modeling and problem formulation from algorithms 

 Similar to the philosophy of probabilistic modeling 
 

 Idea 2:  
     Keep model simple, make expressive decisions (via constraints) 

 Unlike probabilistic modeling, where models become more expressive  
 

 Idea 3:  
     Expressive structured decisions can be supervised indirectly via  
      related simple binary decisions 

 Global Inference can be used to amplify the minimal supervision. 

Modeling 

Inference 

Learning 
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 Constrained Conditional Models – ILP formulations – have been 

shown useful in the context of many NLP problems 
 

 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 
 Summarization; Co-reference; Information & Relation Extraction; Event 

Identifications; Transliteration; Textual Entailment; Knowledge 
Acquisition; Sentiments; Temporal Reasoning, Dependency Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 

more; Constraints Driven Learning, PR, Constrained EM…]  
 
 

 NAACL’12 Tutorial: http://L2R.cs.uiuc.edu/  

 
 

Constrained Conditional Models 

1: 13 



Outline 
 Background: NL Structure with Integer Linear Programming  

 Global Inference with expressive structural constraints in NLP 
 

 Constraints Driven Learning with Indirect Supervision  
 

 Training Paradigms for latent structure  
 Indirect Supervision Training with latent structure (NAACL’10) 
 Training Structure Predictors by Inventing binary labels (ICML’10) 

 
 Response based Learning 

 Driving supervision signal from World’s Response (CoNLL’10,IJCAI’11) 
 Semantic Parsing ; playing Freecell; Language Acquisition 
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Semantic Parsing as Structured Prediction 

    
 
 

 Successful interpretation involves multiple decisions 
 What entities appear in the interpretation? 
 “New York” refers to a state or a city? 
 
 How to compose fragments together?  

 state(next_to()) >< next_to(state()) 

 
 

 Question: How to learn to semantically parse from “task 
level” feedback.  
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X :“What is the largest state that borders New York and Maryland ?" 

Y: largest( state( next_to( state(NY) AND next_to (state(MD)))) 

1. Learning latent structure 
from minimal supervision 

2. Invent/solicit supervision 
to learn structure 

3. Use inference to solicit task 
specific feedback  
• Learn structure 
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I. Paraphrase Identification 

 Consider the following sentences:  
 

 S1:           Druce will face murder charges, Conte said. 
 
 S2:           Conte said Druce will be charged with murder . 

 
 

 Are S1 and S2 a paraphrase of each other? 
 There is a need for an intermediate representation to justify 

this decision 

Given an input x 2 X 
Learn a model f : X !  {-1, 1} 

We need latent variables that explain  
why this is a positive example. 

Given an input x 2 X 
Learn a model f : X  ! H !  {-1, 1} 

X Y H 
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Algorithms: Two Conceptual Approaches  

 Two stage approach (a pipeline; typically used for TE, paraphrase id, others) 

 Learn hidden variables; fix it 
 Need supervision for the hidden layer (or heuristics) 

 For each example, extract features over x and (the fixed) h. 
 Learn a binary classier for the target task 

 
 Proposed Approach: Joint Learning  

 Drive the learning of h from the binary labels 
 Find the best h(x) 
 An intermediate structure representation is good to the extent it 

supports better final prediction.  
 Algorithm? How to drive learning a good H? 

X Y H 



New feature vector for the final decision. 
Chosen h selects a representation. 

Learning with Constrained Latent Representation (LCLR): Intuition 

 If x is positive 
 There must exist a good explanation (intermediate representation) 
  9 h, wT Á(x,h) ¸ 0 
 or, maxh wT Á(x,h) ¸ 0 

 If  x is negative  
 No explanation is good enough to support the answer  
  8 h, wT Á(x,h) · 0 
 or, maxh wT Á(x,h) · 0 

 

 Altogether, this can be combined into an objective function: 
                Minw 1/2||w||2   +  C∑i L(1-zimaxh 2 C wT ∑{s} hs Ás (xi)) 

 

This is an inference step that will 
gain from the CCM formulation  

CCM on the latent structure 

Inference: best h subject to constraints C 

5: 18 
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 Formalized as Structured SVM + Constrained Hidden Structure 
 LCRL: Learning Constrained Latent Representation 

Iterative Objective Function Learning 

Inference 
best h subj. to C 

Prediction 
with inferred h 

Training 
w/r to binary 

decision label 

Initial Objective 
Function  

Generate features 

Update weight 
vector 

Feedback relative 
to binary problem 

ILP inference discussed earlier; 
restrict possible hidden 
structures considered.  



 LCLR provides a general inference formulation that allows the 
use of expressive constraints to determine the hidden level 
 Flexibly adapted for many tasks that require latent representations.  
 
 
 

 Paraphrasing: Model input as graphs, V(G1,2), E(G1,2) 
 Four (types of) Hidden variables:  

 hv1,v2 – possible vertex mappings; he1,e2 – possible edge mappings  
 Constraints: 

 Each vertex in G1 can be mapped to a single vertex in G2 or to null 
 Each edge in G1 can be mapped to a single edge in G2 or to null 
 Edge mapping active iff the corresponding node mappings are active 
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Learning with Constrained Latent Representation (LCLR): Framework 

LCLR Model H: Problem Specific  
Declarative Constraints  X Y H 
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Experimental Results 

Transliteration: 

Recognizing Textual Entailment: 

Paraphrase Identification:* 



Outline 
 Background: NL Structure with Integer Linear Programming  

 Global Inference with expressive structural constraints in NLP 
 

 Constraints Driven Learning with Indirect Supervision  
 

 Training Paradigms for latent structure  
 Indirect Supervision Training with latent structure (NAACL’10) 
 Training Structure Predictors by Inventing binary labels (ICML’10) 

 
 Response based Learning 

 Driving supervision signal from World’s Response (CoNLL’10,IJCAI’11) 
 Semantic Parsing ; playing Freecell; Language Acquisition 
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II: Structured Prediction 

 Before, the structure was in the intermediate level 
 We cared about the structured representation only to the extent it 

helped the final binary decision 
 The binary decision variable was given as supervision 

 What if we care about the structure? 
 Information & Relation Extraction; POS tagging, Semantic Parsing  

 Invent a companion binary decision problem! 
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Structured Prediction 

 Before, the structure was in the intermediate level 
 We cared about the structured representation only to the extent it 

helped the final binary decision 
 The binary decision variable was given as supervision 

 What if we care about the structure? 
 Information Extraction; Relation Extraction; POS tagging, many others. 

 Invent a companion binary decision problem! 
 Parse Citations: Lars Ole Andersen . Program analysis and 

specialization for the C Programming language.  PhD thesis. DIKU , 
University of Copenhagen, May 1994 . 

 Companion: Given a citation; does it have a legitimate citation parse? 
 POS Tagging 
 Companion: Given a word sequence, does it have a legitimate POS 

tagging sequence? 
 Binary Supervision is almost free 

X Y H 
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Companion Task Binary Label as Indirect Supervision 

 The two tasks are related just like the binary and structured 
tasks discussed earlier 
 

 All positive examples must have a good structure 
 Negative examples cannot have a good structure 
 We are in the same setting as before 

 Binary labeled examples are easier to obtain 
 We can take advantage of this to help learning a structured model  

 Algorithm: (1) Use previous algorithm 
                         (2) Augment it with structured supervision 

 

X Y H 
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Joint Learning Framework 

 Joint learning  : If available, make use of both supervision types 

∑∑
∈∈
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Bi

iiB
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2
1min 21

y l a t I 
 א  ה י ל ט י

Target Task 

Yes/No 

Loss on Target Task Loss on Companion Task 

Loss function – same as described earlier. 
 Key: the same parameter w for both components 

Companion Task 
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Experimental Result 

 Very little direct (structured) supervision.  
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Experimental Result 

 Very little direct (structured) supervision.  
 (Almost free) Large amount binary indirect supervision 
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Outline 
 Background: NL Structure with Integer Linear Programming  

 Global Inference with expressive structural constraints in NLP 
 

 Constraints Driven Learning with Indirect Supervision  
 

 Training Paradigms for latent structure  
 Indirect Supervision Training with latent structure (NAACL’10) 
 Training Structure Predictors by Inventing binary labels (ICML’10) 

 
 Response based Learning 

 Driving supervision signal from World’s Response (CoNLL’10,IJCAI’11) 
 Semantic Parsing ; playing Freecell; Language Acquisition 
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Connecting Language to the World [CoNLL’10,ACL’11,IJCAI’11] 

 
 
 
 
 
 

Can I get a coffee with no 
sugar and just a bit of milk 

Can we rely on this interaction to provide supervision? 

MAKE(COFFEE,SUGAR=NO,MILK=LITTLE) 

Arggg 

Great! 

Semantic Parser 
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Traditional approach: 
learn from logical forms 
and gold alignments 

EXPENSIVE! 

Semantic parsing is a  structured prediction problem:  
identify mappings from text to a meaning representation 

Query  
Response: 

Supervision = Expected Response 
 

 
 
 
 

                     
                              Check if Predicted response == Expected response 

Logical 
Query 

Real World Feedback 

  

Interactive Computer 
System Pennsylvania 

Query  
Response: 

r 

largest( state( next_to( const(NY)))) y 

“What is the largest state that borders NY?" NL 
Query 

x 

Train a structured predictor with this binary supervision ! 

Expected : Pennsylvania 
Predicted : NYC 

Negative Response 

Pennsylvania r 

Binary 
Supervision 

Expected : Pennsylvania 
Predicted : Pennsylvania 

Positive Response 

Our approach: use 
only the responses  



Response Based Learning  

TRAIN: Try to get more positive examples (representations with positive feedback) 
Direct (Binary) protocol: a binary classifier on Positive/Negative ex’s 
                   (Problem: many good sub-structures are being demoted) 
Structured Protocol: Use only correct structures.  
                    (Problem: ignores negative feedback) 

Difficulties:  
- Need to generate training examples 
- Negative examples give no information 

Basic Algorithm: 
- Try to generate good structures 

- Inference w Constraints 
- Get world’s response 
- Update parameters  

- Previous algorithms   

5: 34 
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Constraints Drive Inference 

 X:    What is the largest state that borders NY? 
 
 Y:    largest( state( next_to( const(NY)))) 

 
 

 Decompose into two types of decisions: 
 First order: Map lexical items to logical symbols 

 {“largest” largest(), “borders”next_to(),.., “NY”const(NY)} 

 Second order: Compose meaning from logical fragments 
 largest(state(next_to(const(NY))))  

 Domain’s semantics is used to constrain interpretations  
 declarative constraints: Lexical resources (wordnet); type consistency:  

distance in sentence, in dependency tree,… 
 

 

Repeat 
   for all input sentences do 
     Find best structured output 
     Query feedback function 
   end for 
   Learn new W using feedback 
Until Convergence 

So Far 
And now… 
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Empirical Evaluation [CoNLL’10,ACL’11] 

 Key Question: Can we learn from this type of supervision? 
 

Algorithm # training 
structures 

Test set  
accuracy 

No Learning: Initial Objective Fn 
Binary signal: Binary Protocol                                          

0 
0 

22.2% 
69.2 %  

Binary signal: Structured Protocol  0 73.2 % 

Improved Protocol: 0 79.6% 

Improved Protocol + Loss Fn 0 81.6% 

WM*2007   (fully supervised – uses 
gold structures)  

310 75 % 

*[WM]   Y.-W. Wong and R. Mooney. 2007. Learning synchronous grammars for semantic 
parsing with lambda calculus. ACL. 

Current emphasis: Learning to understand natural language 
instructions for games via response based learning 



Learning from Natural Instructions 
 A human teacher interacts with an automated learner using 

natural instructions 
 Learner is given: 

  A lesson describing the target concept directly 
  A few instances exemplifying it 

Challenges: 
(1) how to interpret the 

lesson and 
 
(2) how to use this 
interpretation to do well on 
the final task. 
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Lesson Interpretation as an inference problem 

 X: You can move any top card to an empty freecell  
 
 Y:   Move(a1,a2)  Top(a1, x) Card (a1) Empty(a2) Freecell(a2) 

 
 
 

 Semantic interpretation is framed as an Integer Linear Program 
with three types of constraints:  
 Lexical Mappings: (1st order constraints) 

 At most one predicate mapped to each word 
 Argument Sharing Constraints (2nd order constraints) 

 Type consistency; decision consistency 
 Global Structure Constraints 

 Connected structure enforced via flow constraints 
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Lesson Interpretation as an inference problem 

 X: You can move any top card to an empty freecell  
 
 Y:   Move(a1,a2)  Top(a1, x) Card (a1) Empty(a2) Freecell(a2) 

 
 
 

 Semantic interpretation is framed as an Integer Linear Program 
with three types of constraints:  
 Lexical Mappings: (1st order constraints) 

 At most one predicate mapped to each word 
 Argument Sharing Constraints (2nd order constraints) 

 Type consistency; decision consistency 
 Global Structure Constraints 

 Connected structure enforced via flow constraints 
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Empirical Evaluation [IJCAI’11] 

 Can the induced game-hypothesis generalize to new game 
instances?  
 Accuracy was evaluated over previously unseen game moves  

 
 
 
 
 

 Can the learned reader generalize to new inputs? 
 Accuracy was evaluated over previously unseen game moves using 

classification rules generated from previously unseen instructions.  
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“the language” 

“the world” 

[Topid rivvo den marplox.] 

The language-world mapping problem 

 How do we acquire language?  

Skip 



 A joint line of research with Cindy Fisher’s group.  
 Driven by Structure-mapping: a starting point for syntactic bootstrapping  
 Children can learn the meanings of some nouns via cross-situational 

observations alone [Fisher 1996, Gillette, Gleitman, Gleitman, & Lederer, 1999;more]  
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[Johanna rivvo den sheep.] 

BabySRL: Learning Semantic Roles From Scratch 

Nouns identified 

 But how do they learn the meaning of verbs? 
 Sentences comprehension is grounded by the acquisition of an       

initial set of concrete nouns 

 These nouns yields a skeletal sentence structure — candidate 
arguments; cues to its semantic predicate—argument structure. 

 Represent sentence in an abstract form that permits generalization 
to new verbs   
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BabySRL [Connor et. al, CoNLL’08, ’09,ACL’10, IJCAI’11]  
 
 Realistic Computational model developed to experiment with theories of 

early language acquisition 
 SRL as minimal level language understanding: who does what to whom. 
 Verbs meanings are learned via their syntactic argument-taking roles  
 Semantic feedback to improve syntactic & meaning representation 
 

 Inputs and knowledge sources  
 Only those we can defend children have access to 

 
 Key Components: 

 Representation: Theoretically motivated representation of the input 
 Learning: Guided by knowledge kids have 
 

Exciting results – generalization to new verbs, reproducing and 
recovering from mistakes made by young children. 
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Minimally Supervised BabySRL [IJCAI’11]  

 Goal: Unsupervised “parsing” – identifying arguments & their roles 
 Provide little prior knowledge & only high level semantic feedback  

 Defensible from psycholinguistic evidence 

 
 Unsupervised parsing 

 Identifying part-of-speech states 
 Argument Identification  

 Identify Argument States  
 Identify Predicate States  

 Argument Role Classification  
 Labeled Training using predicted arguments 

 
 Learning is done from CHILDES corpora 
 IJCAI’11:  indirect supervision driven from scene feedback 

Learning with  
Indirect Supervision 

 
Input + Distributional Similarity 

 
Structured  

Intermediate Representation 
(no supervision) 

 
Binary weak supervision for the 

final decision 
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Conclusion 
 Study of machine learning protocols that are based on natural language 

interpretation and world feedback  
 Motivation:  

 Reduce annotation cost 
 Learning from Natural Instructions    
 Language Acquisition 

 Technical approach is based on  
 (1) Learning structure with indirect supervision 
 (2) Constraining  intermediate structure representation declaratively  

 These were introduced via Constrained Conditional Models:  Computational 
Framework for global inference and a vehicle for incorporating knowledge 
in structured tasks – Integer Linear Programming Formulations 

 Applications: Game playing domain, Psycholinguistics, Semantic Parsing, 
ESL,…other structured tasks.   

Thank You! 
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