Learning from Natural Instructions

Dan Roth
Department of Computer Science
University of Illinois at Urbana-Champaign

With thanks to:
Collaborators: Ming-Wei Chang, Michael Connor, Dan Goldwasser, Vivek Srikumar,
Funding: NSF; DHS; NIH; DARPA.
DASH Optimization (Xpress-MP)
Comprehension

A process that maintains and updates a collection of propositions about the state of affairs.

(ENGLAND, June, 1989) - **Christopher Robin** is alive and well. He lives in England. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book. He made up a fairy tale land where Chris lived. His friends were animals. There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to life with his words. The places in the story were all near Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to read about Christopher Robin and his animal friends. Most people don’t know he is a real person who is grown now. He has written two books of his own. They tell what it is like to be famous.

1. Christopher Robin was born in England.
2. Winnie the Pooh is a title of a book.
3. Christopher Robin’s dad was a magician.
4. Christopher Robin must be at least 65 now.

This is an Inference Problem
Can I get a coffee with sugar and no milk

Semantic Parser

MAKE(COFFEE,SUGAR=YES,MILK=NO)

- How to recover meaning from text?
- Annotate with meaning representation; use (standard) “example based” ML
 - Teacher needs deep understanding of the learning agent
 - Annotation burden; not scalable.
- Instructable computing
 - Natural communication between teacher/agent

Can we rely on this interaction to provide supervision (and, eventually, recover meaning)?
Scenarios I: Understanding Instructions [IJCAI’11]

- Understanding Games’ Instructions

 A top card can be moved to the tableau if it has a different color than the color of the top tableau card, and the cards have successive values.

- Allow a teacher to interact with an automated learner using natural instructions
 - Agnostic to agent's internal representations
 - Contrasts with traditional 'example-based' ML

\[
\begin{align*}
moves (a_1, a_2) \\
top (a_1, x_1) \text{ card}(a_1) \text{ freecell}(a_2) \text{ empty}(a_2) \\
&\quad \text{"You can move any of the top cards to an empty freecell"}
\end{align*}
\]

\[
\begin{align*}
moves (a_1, a_2) \\
top (a_1, x_1) \text{ card}(a_1) \text{ tableau}(a_2) \text{ top}(x_2, a_2) \\
&\quad \text{color}(a_1, x_3) \text{ color}(x_2, x_4) \text{ not-equal}(x_3, x_4) \\
&\quad \text{value}(a_1, x_5) \text{ value}(x_2, x_6) \text{ successor}(x_5, x_6) \\
&\quad \text{"A top card can be moved to a tableau if it has a different color than the color of the top tableau card, and the cards have successive values"}
\end{align*}
\]
What to Learn from Natural Instructions?

- Two conceptual ways to think about learning from instructions

- (i) Learn directly to play the game [EMNLP’09; Barziley et. al 10,11]
 - Consults the natural language instructions
 - Use them as a way to improve your feature based representation

- (ii) Learn to interpret a natural language lesson [IJCAI’11]
 - And (jointly) how to use this interpretation to do well on the final task.
 - Will this help generalizing to other games?

- Semantic Parsing into some logical representation is a necessary intermediate step
 - Learn how to semantically parse from task level feedback
 - Evaluate at the task level rather than the representation level
Scenario 1': Semantic Parsing [CoNLL’10,ACL’11…]

X : “What is the largest state that borders New York and Maryland?”

Y: largest(state(next_to(state(NY)) AND next_to (state(MD))))

- Successful interpretation involves multiple decisions
 - What entities appear in the interpretation?
 - “New York” refers to a state or a city?
 - How to compose fragments together?
 - state(next_to()) >= next_to(state())

- Question: How to learn to semantically parse from “task level” feedback.
In all cases: There is an important intermediate representation between the **input** and the **task level**. We are interested in learning to do well on the **task**, **without** getting any feedback in the intermediate level.

- **How do we acquire language?**

 - **“the language”**

 [Topid rivvo den marploxi.]

- **Is it possible to learn the meaning of verbs from natural, behavior level, feedback?** (no “intermediate representation” level feedback)
Outline

- **Background**: NL Structure with Integer Linear Programming
 - Global Inference with expressive structural constraints in NLP

- **Constraints Driven Learning with Indirect Supervision**
 - Training Paradigms for latent structure
 - Indirect Supervision Training with latent structure (NAACL’10)
 - Training Structure Predictors by Inventing binary labels (ICML’10)

- **Response based Learning**
 - Driving supervision signal from World’s Response (CoNLL’10, IJCAI’11)
 - Semantic Parsing ; Playing Freecell; Language Acquisition
 - Some work in progress
Interpret Language Into An Executable Representation

X: "What is the largest state that borders New York and Maryland?"

Y: largest(state(next_to(state(NY) AND next_to(state(MD))))

- Successful interpretation involves multiple decisions
 - What entities appear in the interpretation?
 - "New York" refers to a state or a city?
 - How to compose fragments together?
 - state(next_to()) >= next_to(state())

- Question: How to learn to semantically parse from "task level" feedback.
Learning and Inference in NLP

- Natural Language Decisions are Structured
 - Global decisions in which several local decisions play a role but there are mutual dependencies on their outcome.

- It is essential to make coherent decisions in a way that takes the interdependencies into account. Joint, Global Inference.

- But: Learning structured models requires annotating structures.

- Interdependencies among decision variables should be exploited in Decision Making (Inference) and in Learning.
 - Goal: learn from minimal, indirect supervision
 - Amplify it using interdependencies among variables
Constrained Conditional Models (aka ILP Inference)

How to solve?

This is an Integer Linear Program

Solving using ILP packages gives an exact solution.

Cutting Planes, Dual Decomposition & other search techniques are possible

Penalty for violating the constraint.

Weight Vector for “local” models

Features, classifiers; log-linear models (HMM, CRF) or a combination

How far y is from a “legal” assignment

(Soft) constraints component

How to train?

Training is learning the objective function

Decouple? Decompose?

How to exploit the structure to minimize supervision?

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models
Three Ideas

- **Idea 1:** Separate modeling and problem formulation from algorithms
 - Similar to the philosophy of probabilistic modeling

- **Idea 2:** Keep model simple, make expressive decisions (via constraints)
 - Unlike probabilistic modeling, where models become more expressive

- **Idea 3:** Expressive structured decisions can be supervised indirectly via related simple binary decisions
 - Global Inference can be used to amplify the minimal supervision.
Constrained Conditional Models

- Constrained Conditional Models – **ILP formulations** – have been shown useful in the context of many NLP problems

- [Roth & Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL …]
 - Summarization; Co-reference; Information & Relation Extraction; Event Identifications; Transliteration; Textual Entailment; Knowledge Acquisition; Sentiments; Temporal Reasoning, Dependency Parsing,…

- Some theoretical work on training paradigms [Punyakanok et. al., 05 more; Constraints Driven Learning, PR, Constrained EM…]

- NAACL’12 Tutorial: http://L2R.cs.uiuc.edu/
Outline

- **Background:** NL Structure with Integer Linear Programming
 - Global Inference with expressive structural constraints in NLP

- Constraints Driven Learning with Indirect Supervision
 - Training Paradigms for latent structure
 - Indirect Supervision Training with latent structure (NAACL’10)
 - Training Structure Predictors by Inventing binary labels (ICML’10)

- Response based Learning
 - Driving supervision signal from World’s Response (CoNLL’10, IJCAI’11)
 - Semantic Parsing ; playing Freecell; Language Acquisition
Semantic Parsing as Structured Prediction

X: “What is the largest state that borders New York and Maryland?”

Y: largest(state(next_to(state(NY) AND next_to(state(MD)))))

- Successful interpretation involves multiple decisions
 - What entities appear in the interpretation?
 - “New York” refers to a state or a city?
 - How to compose fragments together?
 - state(next_to()) >= next_to(state())

Question: How to learn to semantically parse from “task level” feedback.

1. Learning latent structure from minimal supervision
2. Invent/solicit supervision to learn structure
3. Use inference to solicit task specific feedback
 ▪ Learn structure
I. Paraphrase Identification

- Consider the following sentences:
 - S1: Druce will face murder charges, Conte said.
 - S2: Conte said Druce will be charged with murder.

- Are S1 and S2 a paraphrase of each other?
- There is a need for an intermediate representation to justify this decision.

Given an input \(x \in X \)
Learn a model \(f : X \to \{-1, 1\} \)

We need latent variables that explain why this is a positive example.

Given an input \(x \in X \)
Learn a model \(f : X \to H \to \{-1, 1\} \)
Algorithms: Two Conceptual Approaches

- **Two stage approach** (a pipeline; typically used for TE, paraphrase id, others)
 - Learn hidden variables; **fix it**
 - **Need supervision for the hidden layer (or heuristics)**
 - For each example, extract features over \(x \) and (the fixed) \(h \).
 - Learn a binary classifier for the target task

- **Proposed Approach: Joint Learning**
 - Drive the learning of \(h \) from the binary labels
 - Find the **best** \(h(x) \)
 - An intermediate structure representation is good to the extent it supports better final prediction.
 - Algorithm? How to drive learning a good \(H \)?
Learning with Constrained Latent Representation (LCLR): Intuition

- **If x is positive**
 - There must exist a good explanation (intermediate representation)
 - $\exists h, w^T \phi(x,h) \geq 0$
 - or, $\max_h w^T \phi(x,h) \geq 0$

- **If x is negative**
 - No explanation is good enough to support the answer
 - $\forall h, w^T \phi(x,h) \leq 0$
 - or, $\max_h w^T \phi(x,h) \leq 0$

- Altogether, this can be combined into an objective function:
 $$\min_w \frac{1}{2}||w||^2 + C \sum_i L(1-z_i \max_{h \in \mathcal{C}} w^T \sum_s h_s \phi_s (x_i))$$

This is an inference step that will gain from the CCM formulation CCM on the latent structure.

New feature vector for the final decision. Chosen h selects a representation.

Inference: best h subject to constraints C
Iterative Objective Function Learning

- **Inference**
 - best h subj. to C

- **Prediction**
 - with inferred h

- **Training**
 - w/r to binary decision label

- **Generate features**
- **Update weight vector**
- **Feedback relative to binary problem**

- **Initial Objective Function**

- **ILP inference discussed earlier; restrict possible hidden structures considered.**

- **Formalized as Structured SVM + Constrained Hidden Structure**

- **LCRL: Learning Constrained Latent Representation**
Learning with Constrained Latent Representation (LCLR): Framework

- LCLR provides a general inference formulation that allows the use of expressive constraints to determine the hidden level
 - Flexibly adapted for many tasks that require latent representations.

- Paraphrasing: Model input as graphs, $V(G_{1,2})$, $E(G_{1,2})$
 - Four (types of) Hidden variables:
 - $h_{v_{1,2}}$ – possible vertex mappings; $h_{e_{1,2}}$ – possible edge mappings

\[
\forall v_1 \in V(G_1), \sum_{v_2 \in V(G_2)} h_{v_1,v_2} + h_{v_1,*} = 1, \quad \forall v_2 \in V(G_2), \sum_{v_1 \in V(G_1)} h_{v_1,v_2} + h_{*,v_2} = 1
\]

\[
\forall e_1 \in E(G_1), \sum_{e_2 \in E(G_2)} h_{e_1,e_2} + h_{e_1,*} = 1, \quad \forall e_2 \in E(G_2), \sum_{e_1 \in E(G_1)} h_{e_1,e_2} + h_{*,e_2} = 1
\]

\[
h_{v_1,v_2} + h_{v_1,v_2}' - h_{e_1,e_2} \leq 1, \quad h_{v_1,v_2} \geq h_{e_1,e_2}, \quad h_{v_1,v_2}' \geq h_{e_1,e_2}
\]
Experimental Results

Transliteration:

<table>
<thead>
<tr>
<th>Transliteration System</th>
<th>Acc</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Goldwasser and Roth 2008)</td>
<td>N/A</td>
<td>89.4</td>
</tr>
<tr>
<td>Alignment + Learning</td>
<td>80.0</td>
<td>85.7</td>
</tr>
<tr>
<td>LCLR</td>
<td>92.3</td>
<td>95.4</td>
</tr>
</tbody>
</table>

Recognizing Textual Entailment:

<table>
<thead>
<tr>
<th>Entailment System</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median of TAC 2009 systems</td>
<td>61.5</td>
</tr>
<tr>
<td>Alignment + Learning</td>
<td>65.0</td>
</tr>
<tr>
<td>LCLR</td>
<td>66.8</td>
</tr>
</tbody>
</table>

Paraphrase Identification:

<table>
<thead>
<tr>
<th>Alignment + Learning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LCLR</td>
<td>72.00</td>
</tr>
<tr>
<td></td>
<td>72.75</td>
</tr>
</tbody>
</table>
Outline

- **Background**: NL Structure with Integer Linear Programming
 - Global Inference with expressive structural constraints in NLP

- Constraints Driven Learning with **Indirect Supervision**
 - Training Paradigms for latent structure
 - Indirect Supervision Training with latent structure (NAACL’10)
 - Training Structure Predictors by Inventing binary labels (ICML’10)

- **Response based Learning**
 - Driving supervision signal from World’s Response (CoNLL’10, IJCAI’11)
 - Semantic Parsing; playing Freecell; Language Acquisition
II: Structured Prediction

- Before, the structure was in the **intermediate level**
 - We cared about the structured representation only to the extent it helped the final binary decision
 - The binary decision variable was given as **supervision**

- **What if we care about the structure?**
 - Information & Relation Extraction; POS tagging, **Semantic Parsing**

- **Invent a companion binary decision problem!**
Structured Prediction

- Before, the structure was in the **intermediate level**
 - We cared about the structured representation only to the extent it helped the final binary decision
 - The binary decision variable was given as **supervision**

- What if we care about the structure?
 - Information Extraction; Relation Extraction; POS tagging, many others.

- **Invent a companion binary decision problem!**
 - **Companion**: Given a citation; does it have a legitimate citation parse?
 - **POS Tagging**
 - **Companion**: Given a word sequence, does it have a legitimate POS tagging sequence?

- Binary Supervision is **almost free**
Companion Task Binary Label as Indirect Supervision

- The two tasks are **related** just like the **binary** and **structured** tasks discussed earlier.

- All positive examples must have a good structure.

- Negative examples cannot have a good structure.

- We are in the same setting as before:
 - Binary labeled examples are **easier** to obtain.
 - We can take advantage of this to help learning a structured model.

- **Algorithm:**
 1. Use previous algorithm
 2. Augment it with structured supervision.
Joint Learning Framework

- Joint learning: If available, make use of both supervision types

Target Task

I t a l y

Companion Task

I l l i n o i s

Yes/No

Loss function – same as described earlier.

Key: the same parameter w for both components

$$\min_w \frac{1}{2} w^T w + C_1 \sum_{i \in S} L_S(x_i, y_i; w)$$

Loss on Target Task

Loss on Companion Task
Experimental Result

- Very little direct (structured) supervision.
Experimental Result

- Very little direct (structured) supervision.
- (Almost free) Large amount binary indirect supervision

![Bar Chart]

- Phonetic Alignment
- POS
- IE

- Direct (structured labeled) only
- Direct + indirect (both structured and binary)
Outline

- **Background:** NL Structure with Integer Linear Programming
 - Global Inference with expressive structural constraints in NLP

- **Constraints Driven Learning with Indirect Supervision**
 - Training Paradigms for latent structure
 - Indirect Supervision Training with latent structure (NAACL’10)
 - Training Structure Predictors by Inventing binary labels (ICML’10)

- **Response based Learning**
 - Driving supervision signal from World’s Response (CoNLL’10, IJCAI’11)
 - Semantic Parsing; playing Freecell; Language Acquisition
Connecting Language to the World [CoNLL’10, ACL’11, IJCAI’11]

Can I get a coffee with no sugar and just a bit of milk

Semantic Parser

MAKE(COFFEE,SUGAR=NO,MILK=LITTLE)

Can we rely on this interaction to provide supervision?
Our approach: use only the responses

Traditional approach:
Learn from logical forms and gold alignments
EXPENSIVE!

Query Response:
Supervision = Expected Response
Check if Predicted response == Expected response

Semantic parsing is a structured prediction problem:
identify mappings from text to a meaning representation

Train a structured predictor with this binary supervision!
Response Based Learning

Input: Inputs \(\{x^i\}_{i=1}^N \),

\[
\text{Feedback} : \mathcal{X} \times \mathcal{Y} \to \{+1, 1\},
\]

initial weight vector \(w \)

1: repeat
2: \hspace{1em} for \(l = 1, \ldots, N \) do
3: \hspace{2em} \(\hat{h}, \hat{y} = \arg \max_{h,y} w^T \Phi(x^l, h, y) \)
4: \hspace{2em} \(f = \text{Feedback}(x^l, \hat{y}) \)
5: \hspace{2em} add \((\Phi(x^l, \hat{h}, \hat{y}), f)\) to \(B \)
6: \hspace{1em} end for
7: \(w \leftarrow \text{TRAIN}(B) \)
8: until Convergence
9: return \(w \)

Difficulties:
- Need to generate training examples
- Negative examples give no information

Basic Algorithm:
- Try to generate good structures
 - Inference \(w \) Constraints
- Get world’s response
- Update parameters
 - Previous algorithms

TRAIN: Try to get more positive examples (representations with positive feedback)

Direct (Binary) protocol: a binary classifier on Positive/Negative ex’s
(Problem: many good sub-structures are being demoted)

Structured Protocol: Use only correct structures.
(Problem: ignores negative feedback)
Constraints Drive Inference

- X: What is the largest state that borders NY?
- Y: \(\text{largest(state(next_to(const(NY))))} \)

Decompose into two types of decisions:

- **First order**: Map lexical items to logical symbols

 \{“largest”\(\rightarrow\)\text{largest()}, “borders”\(\rightarrow\)\text{next_to()},... “NY”\(\rightarrow\)\text{const(NY)} \}

- **Second order**: Compose meaning from logical fragments

 \text{largest(state(next_to(const(NY))))}

Domain’s semantics is used to constrain interpretations

- declarative constraints: Lexical resources (wordnet); type consistency: distance in sentence, in dependency tree,...

Repeat

\[
y^* = F_w(x) = \arg\max_{y \in Y} \text{score}(x, y) = \arg\max_{y \in Y, h \in H} w^T \Phi(x, y, h)
\]

for all input sentences do

 Find best structured output

 Query feedback function
end for

Learn new W using feedback

Until Convergence

And now...

So Far

So Far
Empirical Evaluation [CoNLL’10,ACL’11]

Key Question: Can we learn from this type of supervision?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th># training structures</th>
<th>Test set accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Learning: Initial Objective Fn</td>
<td>0</td>
<td>22.2%</td>
</tr>
<tr>
<td>Binary signal: Binary Protocol</td>
<td>0</td>
<td>69.2 %</td>
</tr>
<tr>
<td>Binary signal: Structured Protocol</td>
<td>0</td>
<td>73.2 %</td>
</tr>
<tr>
<td>Improved Protocol:</td>
<td>0</td>
<td>79.6%</td>
</tr>
<tr>
<td>Improved Protocol + Loss Fn</td>
<td>0</td>
<td>81.6%</td>
</tr>
<tr>
<td>WM*2007 (fully supervised – uses gold structures)</td>
<td>310</td>
<td>75 %</td>
</tr>
</tbody>
</table>

*[WM] Y.-W. Wong and R. Mooney. 2007. Learning synchronous grammars for semantic parsing with lambda calculus. ACL.

Current emphasis: Learning to understand natural language instructions for games via response based learning
Learning from Natural Instructions

- A human teacher interacts with an automated learner using natural instructions
- Learner is given:
 - A lesson describing the target concept directly
 - A few instances exemplifying it

Challenges:
1. how to interpret the lesson and
2. how to use this interpretation to do well on the final task.
Lesson Interpretation as an inference problem

- X: You can move any top card to an empty freecell

- Y: Move(a1,a2) Top(a1, x) Card (a1) Empty(a2) Freecell(a2)

\[y^* = F_w(x) = \arg \max_{y \in Y} \text{score}(x, y) = \arg \max_{y \in Y, h \in H} w^T \Phi(x, y, h) \]

- Semantic interpretation is framed as an Integer Linear Program with three types of constraints:
 - Lexical Mappings: (1st order constraints)
 - At most one predicate mapped to each word
 - Argument Sharing Constraints (2nd order constraints)
 - Type consistency; decision consistency
 - Global Structure Constraints
 - Connected structure enforced via flow constraints
Lesson Interpretation as an inference problem

with three types of constraints:

- **Lexical Mappings:** (1st order constraints)
 - At most one predicate mapped to each word
- **Argument Sharing Constraints** (2nd order constraints)
 - Type consistency; decision consistency
- **Global Structure Constraints**
 - Connected structure enforced via flow constraints
Empirical Evaluation [IJCAI’11]

- Can the induced **game-hypothesis** generalize to new game instances?
 - Accuracy was evaluated over previously unseen game moves

```
<table>
<thead>
<tr>
<th>Target Concept</th>
<th>Initial Model</th>
<th>Learned Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREECCELL</td>
<td>0.78</td>
<td>0.956</td>
</tr>
<tr>
<td>HOMECELL</td>
<td>0.532</td>
<td>0.672</td>
</tr>
<tr>
<td>TABLEAU</td>
<td>0.536</td>
<td>0.628</td>
</tr>
</tbody>
</table>
```

- Can the learned **reader** generalize to new inputs?
 - Accuracy was evaluated over previously unseen game moves using classification rules generated from previously unseen instructions.

```
<table>
<thead>
<tr>
<th>Target Concept</th>
<th>Initial Model</th>
<th>Learned Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREECCELL</td>
<td>0.78</td>
<td>0.967</td>
</tr>
<tr>
<td>HOMECELL</td>
<td>0.532</td>
<td>0.668</td>
</tr>
<tr>
<td>TABLEAU</td>
<td>0.536</td>
<td>0.608</td>
</tr>
</tbody>
</table>
```
The language-world mapping problem

- How do we acquire language?

“the language”

[Topid rivvo den marplox.]

“The world”
A joint line of research with Cindy Fisher’s group.

Driven by **Structure-mapping**: a starting point for syntactic bootstrapping

Children can learn the meanings of some **nouns** via cross-situational observations alone [Fisher 1996, Gillette, Gleitman, Gleitman, & Lederer, 1999; more]

But how do they learn the **meaning of verbs**?

- Sentences comprehension is grounded by the acquisition of an **initial set of concrete nouns**
- These nouns yields a **skeletal sentence structure** — candidate arguments; cues to its semantic predicate—argument structure.
- Represent sentence in an **abstract form** that permits generalization to new verbs
BabySRL [Connor et. al, CoNLL’08, ’09,ACL’10, IJCAI’11]

- **Realistic Computational model** developed to experiment with theories of early language acquisition
 - SRL as minimal level language understanding: who does what to whom.
 - Verbs meanings are learned via their syntactic argument-taking roles
 - Semantic feedback to improve syntactic & meaning representation

- Inputs and knowledge sources
 - Only those we can defend children have access to

- Key Components:
 - Representation: Theoretically motivated representation of the input
 - Learning: Guided by knowledge kids have

Exciting results – generalization to new verbs, reproducing and recovering from mistakes made by young children.
Minimally Supervised BabySRL [IJCAI’11]

- Goal: Unsupervised “parsing” – identifying arguments & their roles
- Provide little prior knowledge & only high level semantic feedback
 - Defensible from psycholinguistic evidence

- Unsupervised parsing
 - Identifying part-of-speech states

- Argument Identification
 - Identify Argument States
 - Identify Predicate States

- Argument Role Classification
 - Labeled Training using predicted arguments

- Learning is done from CHILDES corpora
- IJCAI’11: indirect supervision driven from scene feedback

Learning with Indirect Supervision

- Input + Distributional Similarity
- Structured Intermediate Representation (no supervision)
- Binary weak supervision for the final decision
Conclusion

- Study of machine learning protocols that are based on natural language interpretation and world feedback

- Motivation:
 - Reduce annotation cost
 - Learning from Natural Instructions
 - Language Acquisition

- Technical approach is based on
 - (1) Learning structure with indirect supervision
 - (2) Constraining intermediate structure representation declaratively

- These were introduced via Constrained Conditional Models: Computational Framework for global inference and a vehicle for incorporating knowledge in structured tasks – Integer Linear Programming Formulations

- Applications: Game playing domain, Psycholinguistics, Semantic Parsing, ESL,...other structured tasks.