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From Al to Deep Learning

Al requires operational knowledge

Handcrafting it all is daunting,
brittle, incomplete, failed: learn it

Most common now: hand-crafted
features + simple (linear) ML

Without the right (task-specific)
features: curse of dimensionality
Need for learning the features:
representation-learning

Theoretical and empirical evidence
in favor of multiple levels of
representation (Deep Learning)




Deep Learning: General Motivation

e Learning features
e Learn features as part of a machine learning system

e Not all features can be explicitly described by experts

e Biologically inspired learning
e Brain has a deep architecture

e Cortex seems to have a
generic learning algorithm

e Humans first learn simpler
concepts and then compose
them to more complex ones




Deep Learning: General Motivation

e |t works well already for vision, NLP, collaborative filtering,...
e Wins two transfer learning competitions in 2011
e State of the art performance for POS, NER, Chunking

Task Benchmark | SENNA
Part of Speech (POS) (Accuracy) 07.24 % 97.29 %
Chunking (CHUNK) (F1) 94.29 % 94.32 %
Named Entity Recognition (NER) (F1) 89.31 % 89.59 %

(Collobert et al., 2011)

e Sentiment analysis on opinions, experiences, movies
e Paraphrase detection (Socher et al. 2011)

e Relation classification

e Language Modeling (Schwenk et al, Mikolov et al)



Deep Learning Motivation for Semantics

e Language Models: model joint probability of word sequences

* Training sentence

The cat is walking in the bedroom
* Test sentence:

A dog was running in a room

e Sparsity / curse of dim. problem for longer n-grams
e Possible Solutions: back-off, word classes (too coarse)
e Better: similar representations for semantically similar phrases



15t step: represent words

* Deep learning can learn a distributed continuous-
valued vector for each word from raw text:

France Jesus XBOX Reddish Scratched
Spain Christ Playstation  Yellowish ~ Smashed
ltaly God Dreamcast  Greenish  Ripped
Russia Resurrection  PS## # Brownish  Brushed
Poland Prayer SNES Bluish Hurled
England Yahweh WH Creamy Grabbed
Denmark Josephus NES Whitish Tossed
Germany  Moses Nintendo Blackish Squeezed
Portugal Sin Gamecube Silvery Blasted
Sweden Heaven PSP Greyish Tangled
Austria Salvation Amiga Paler Slashed

Collobert & Weston, ICML’2008



Distributed Representations

* In contrast to the the “atomic” or
“localist” representations employed in
traditional cognitive science, a
distributed representation is one in
which “each entity is represented by a
pattern of activity distributed over
many computing elements, and each
computing element is involved in
representing many different entities”.

 Hinton (1984) “Distributed
representations” CMU-CS-84-157




Local vs Distributed Latent Variables/Attributes

Clustering Multi-clustering



2"d step: learn to compose
words into phrases and
semantic relations
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“Shallow” circuit

input

123 n

Falsely reassuring theorems: one can approximate any
reasonable (smooth, boolean, etc.) function with a 2-layer
architecture



Deep Architectures are More Expressive

a .'E '_,T:';
Logic gates

2 layers of = Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximat
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007, Bengio &
Delalleau 2011, Braverman 2011) Tt
3 2n

: 1 2
Functions compactly represented
with k layers may require
exponential size with 2 layers

Theoretical arguments:

=




Sharing Components in a Deep Architecture
Polynomial expressed with shared components: advantage of

depth may grow exponentially

2
(r179)(X2X3) + (r129)(2374) + (X2X3)” + (XoX3)(2374)



Deep Architectures and Sharing Statistical
Strength, Multi-Task / Transfer Learning

==

e Generalizing better to new tasks
& domains is crucial to approach
Al

e Deep architectures can learn
good intermediate
representations shared across
tasks

e Good representations are often
those making sense for many
tasks because they capture
underlying factors = semantics




Unsupervised and Transfer Learning Challenge +
Transfer Learning Challenge: Deep Learning 15t Place
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Invariance and Disentangling 2

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =2
avoid the curse of dimensionality
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Advantages of Sparse Representations

e Just add a penalty on learned representation

e Information disentangling (compare to dense compression)
 More likely to be linearly separable (high-dimensional space)
e Locally low-dimensional representation = local chart

« Hi-dim. sparse = efficient variable size representation
= data structure

Few bits of information Many bits of information



Deep & Distributed NLP

i-th output = P(w; = i | context)

° See ”Neura/ NEt normalized exponential
Language Models” Ce—— . ——%ee )
SChOIGI'pEdia en try most| computation here

e NIPS’2000 and JMLR ¥
2003 “A Neural X X rrre—r—0

Probabilistic
Language Model”

* Each word represented by
a distributed continuous- Table «. Matrix C'

Va | ue d co d e iﬁog—up ----------------------- shared parameters

across words
| * Generalizes to sequences
| of words that are
semantically similar to
training sequences

Wi—nt1 W2 We—1




Deep Learning: Motivations for NLP

* Allows to generalize to sequences of words that are
semantically similar to training sequences

* Training sentence
The cat is walking in the bedroom

e Can generalize to
A dog was running in a room

e Because of the similarity between distributed
representations for (a,the), (cat,dog), (is,was), etc.



Neural Networks for Learning Word Vectors

e |dea: A word and its context is a positive
training sample, a random word in that same
context is a negative training sample:

e catchillsonamat cat chills Jeju a mat

e Similar: Implicit negative evidence in
Contrastive Estimation, Smith and Eisner (2005)



A

neural network for learning word vectors

ldea: A word and its context is a positive training
sample, a random word in that same context is a

negative training sample.
score(cat chills on a mat) > score(cat chills Jeju a mat)

How to compute the score?

With a neural network

Each word is associated with an n-dimensional
vector



Word embedding matrix
L e RnX|V|
* Initialize all word vectors randomly to form a
word embedding matrix

| = [
e These are the word features we want to learn

the cat mat ...

e Also called look-up table



t-SNE of Embeddings: zoom 1
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t-SNE of Embeddings: zoom 2
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t-SNE of Embeddings: zoom 3
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Joint Image-Query Embedding Space

‘ @W( DDDDDDD )

DOLPHIN
— OBAMA
—EIFFEL TOWER

S. Bengio, J. e 3
Weston et al @ B 8=
Google =

(NIPS’2010,
JMLR 2010,
ML) 2010,

NIPS’2009)

-

100-dim
embedding space

Learn (<) and ®,-) to optimize precision@k.



Some results with deep distributed
representatlons for NLP

(Bengio et al 2001, 2003): beating n-grams on small datasets (Brown &
APNews), but much slower

e (Schwenk et al 2002,2004,2006): beating state-of-the-art large-vocabulary
speech recognizer using deep & distributed NLP model, with *real-time*
speech recognition

e (Morin & Bengio 2005, Blitzer et al 2005, Mnih & Hinton 2007,2009):
better & faster models through

e (Collobert & Weston 2008): reaching state-of-the-art in multiple NLP tasks
(SRL, POS, NER, chunking) thanks to unsupervised pre-training and multi-
task learning

e (Baietal 2009): ranking & semantic indexing (info retrieval).
e (Collobert 2010): Deep Learning for Efficient Discriminative Parsing

e (S.Bengio, J. Weston et al @ Google, 2009,2010,2011): joint embedding
space for images and keywords, Google image search

e (Sutskever & Martens 2011): beating SOA in text compression.

e (Socheretal 2011): parsing with recursive nets, ICML 2011 distinguished
application paper award

e (Mikolov et al 2011): beating the SOA in perplexity with recurrence



Domain Adaptation (cm 2011)

1.6/ mm

£ A" Stacked Denoising ]

s+ * Autoencoders find fle
more features that tend 2=
to be useful either for
predicting domain or
sentiment, not both =
disentangling?
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Sentiment Analysis: Transfer Learning

25 Amazon.com domains:
toys, software, video,
books, music, beauty, ... '

in-domain ratio

Unsupervised pre-training "*[
of input space on all 055
domains 0a4f

Supervised SVM on 1 0sf

domain, generalize out- .|
of-domain

038

Baseline: bag-of-words +
SVM

0.86 -

Baseline Sk Baseline 100k MLP DL DL3



Output

Representing
Sparse High-
Dimensional Stuff

7 f(x) =maz(0,x)
) oMl Deep Sparse Rectifier Neural Networks,

Hidden layer 2

Hidden layer 1

Input

. Sampled Reconstruction for Large-Scale
L earning of Embeddings, Dauphin, Glorot &
BengiO, ICML 2011 " code= latent features
CO0000

L X JORN Ce0 ...0

sparse input dense output probabilities




Speedup from Sampled Reconstruction
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Learning Structured
Embeddings of Knowledge
Bases, Bordes, Weston,
Collobert & Bengio, AAAI 2011

D€ T X 4 - ] £
T | o 2 =l

Joint Learning of Words and
Meaning Representations for
Open-Text Semantic Parsing,
Bordes, Glorot, Weston &
Bengio, AISTATS 2012

eft-hand

has part

of




Modeling Relations with Matrices

energy

choose matrices

=

Ihs relation

%hoose vector
'ns
Model (lhs, relation, rhs)

Each concept = 1 embedding vector

Each relation = 2 matrices

Ranking criterion

Energy = low for training examples, high o/w



Allowing Relations on Relations
energy

E choose vector
relation

'ns

Verb = relation. Too many to have a matrix each.
Each concept = 1 embedding vector

Each relation = 1 embedding vector
Can handle relations on relations on relations




Training on Full Sentences
energy

Element-wise max. Element-wi

EIem;‘_nt-;ise max.

Subi words Verb words _
black é cat__ eat_ 2 white__1 mouse_2

- Use SENNA (Collobert 2010) = embedding-based NLP tagger for
Semantic Role Labeling, breaks sentence into

(subject part, verb part, object part)
- Use max-pooling to aggregate embeddings of words inside
each part



Combining Multiple Sources of
Evidence with Shared Embeddings

e The undirected graphical model version of relational
learning

e With embeddings (shared representations) to help
propagate information among data sources: here
WordNet, XWN, Wikipedia, FreeBase,...

e Different energy functions can be used for different
types of relations, or a generic representation and
generic relation symbols used for everything



Open-Text Semantic Parsing (AISTATS 2012)

* Semantic Parsing: map a sentence into a Meaning
Representation. Meaning Representation (MR): formal
representation of the meaning. It can be in PROLOG, MySQl, ...
or any structured language.

e Examples:

e o “What are the high points of states surrounding Mississippi ?”
answer(A,(high point(B,A),state(B),next to(B,C),const(C,stateid(mississippi))))

e o “Show me flights from Boston to New York.”
SELECT flight id FROM flight WHERE from airport = "boston” AND to airport = 'new york’

e QOpen-text: ability to handle any sentence regardless of its
vocabulary (opposite to closed-domain).

39



Processing Pipeline

e 3steps:
" A musical score accompanies a television program ."
l, Semantic Role Labeling
(*"A musical score", “"accompanies"”, "'a television program")
\l' Preprocessing (POS, Chunking, ...)
((_music:al_JJ score_NN ), _accompany_VB , _television_program_ NN )

J, Word-sense Disambiguation

((_musical_JJ_1 score_NN_2), _accompany_VB_ 1, television_ program NN_1)
e |ast formula defines the Meaning Representation (MR).

40



Training Criterion

e Intuition: if an entity of a triplet was missing, we would like our
model to predict it correctly i.e. to give it the lowest energy.
For example, this would allow us to answer questions like “what
is part of a car?”

* Hence, for any training triplet x, = (lhs, rel,, rhs) we would like:
(1) E(lhs;, rel, rhs;) < E(lhs;, rel;, rhs),
(2) E(lhs, rel, rhs)) < E(lhs;, rel;, rhsy),
(3) E(lhs, rel, rhs;) < E(lhs;, rel,, rhs;),

That is, the energy function E is trained to rank training samples
below all other triplets.

41



Training Algorithm:

pseudo-likelihood + uniform sampling of negative variants

Train by stochastic gradient descent:
1. Randomly select a positive training triplet x, = (lhs,, rel,, rhs;).
2. Randomly select constraint (1), (2) or (3) and an entity é:

- If constraint (1), construct negative triplet X' = (&, rel,, rhs,).
- Else if constraint (2), construct X’ = (lhs, €, rhs,).
- Else, construct X' = (lhs,, rel, €).

3. If E(x,) > E(X’) — 1 make a gradient step to minimize:
max(0, 1 - E(X’) + E(x/)).
4. Constraint embedding vectors to norm 1

42



Question Answering:

implicitly adding new relations to WN

Model (All) TextRunner
lhs ~army_NN_1 army
rel _attack_VvB_1 attacked
troop_NN_4 Israel
top | _armed_service_NN_1 the village
ranked Ship_NN_1 another army
rhs _territory _NN_1 the city
~_military_unit_NN_1 the fort
_business_firm_NN_1 People
top _person_NN_1 Players
ranked family_NN_1 one
lhs _payoff_NN_3 Students
_card_game_NN_1 business
rel _earn_ VB _1 earn
rhs -money_NN_1 money

MRs inferred from
text define triplets
between WordNet
synsets.

Model captures

knowledge about
relations between
nouns and verbs.

— Implicit addition
of new relations to
WordNet!

— Generalize
Freebase!



Question Answering: Ranking Score
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Embedding Near Neighbors of Words & Senses

“mark_NN “mark_NN_1 “mark_NN_2
_indication_NN _score_NN_1 “marking_NN_1
_print_NN_3 number_NN_2 symbolizing_NN_1
_print_NN _gradation_NN “naming_NN_1
_roll_ NN _evaluation_NN_1 _marking_NN
_pointer_NN “tier_.NN_1 _punctuation_NN_3
_take_VB _canary_NN _different_JJ_1
_bring_VB _Ssea_mew_NN_1 _eccentric_NN
_put_VB _yellowbird_NN_2 _dissimilar_JJ
_ask_VB _canary_bird_NN_1 Same_JJ. 2
_hold_VB larus_marinus_NN_1| _similarity_NN_1

_provide_VB

“mew_NN

~common_JJ_1

45



Word Sense Disambiguation

e Senseval-3 results
(only sentences with

Subject-Verb-Object
structure)

MFS=most frequent sense
All=training from all sources

Gamble=Decadt et al 2004
(Senseval-3 SOA)

e XWN results
XWN = eXtended WN
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Recursive Application of Relational Operators

Bottou 2011: ‘From machine learning to machine reasoning’, also
Socher ICML2011.

sat
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the
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Relations on Multiple Data Types

e Add energy terms associated to relations from
different data sources, shared embeddings

\\ e -‘ windshield

_ m-€nergy(object image, is-a, object label) +

’ energy(part image, is-a, part label) +
energy(part image, image-part-of, object image)
+ energy(part label, label-part-of, object label)

rearview-mirror B

Table 1: Summary of Test Set Results on ImageNet-WordNet. Precision at 1 and 10, and Mean
Average Precision (MAP) are given. (IW) resp. (I) refers to the (Image,Word) setup resp. (Image).

Image Annotation Part-Object Detection Triplet
Models p@1 p@l10 | MAP p@]l p@10 | MAP p@] p@l10 | MAP
Shared (IW) 9.14% 3.51% | 0.1768 || 11.48% | 3.40% | 0.1892 || 26.31% | 9.90% | 0.5545
UnShared (IW) || 9.45% 3.68% | 0.1847 || 10.01% | 3.02% | 0.1669 || 33.13% | 9.62% | 0.5595
Shared (I) 11.21% | 3.85% | 0.2021 || 5.13% 1.84 % | 0.0955 || 11.21% | 3.85% | 0.2021
UnShared (1) 12.94% | 4.10% | 0.2219 || 6.08% 2.11% | 0.1118 || 12.94% | 4.10% | 0.2219
SVM 10.02% | 3.72% | 0.1864 | — - - 10.02% | 3.72% | 0.1864




Recurrent and Recursive Nets

e Replicate a parametrized function over different time
steps or nodes of a DAG

e Qutput state at one time-step / node is used as input
for another time-step / node

e Very deep once unfolded!

Wﬁ“ﬁ".;‘h




Conclusion

e Al - learning > representation-learning

e Deep learning to disentangle factors of variation and discover
representations for higher-level abstractions

 No immediate generalization from discrete spaces = learn a
distributed semantic representation for discrete objects

e Word embeddings generalize across semantically similar words

e Combine word embeddings into representations and energy
functions for phrases and relations

e Applications to language modeling (speech recognition,
language translation), sentiment analysis, parsing, paraphrasing,

word sense disambiguation, question answering...
50



LISA team: erci! Questions?

e




